Membrane curvature and mechanisms of dynamic cell membrane remodelling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-11-30

AUTHORS

Harvey T. McMahon, Jennifer L. Gallop

ABSTRACT

Membrane curvature is no longer seen as a passive consequence of cellular activity but an active means to create membrane domains and to organize centres for membrane trafficking. Curvature can be dynamically modulated by changes in lipid composition, the oligomerization of curvature scaffolding proteins and the reversible insertion of protein regions that act like wedges in membranes. There is an interplay between curvature-generating and curvature-sensing proteins during vesicle budding. This is seen during vesicle budding and in the formation of microenvironments. On a larger scale, membrane curvature is a prime player in growth, division and movement. More... »

PAGES

590-596

References to SciGraph publications

  • 2001-03. GTPase activity of dynamin and resulting conformation change are essential for endocytosis in NATURE
  • 2002-09. Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat in NATURE
  • 2002-09. Curvature of clathrin-coated pits driven by epsin in NATURE
  • 1995-03. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding in NATURE
  • 2005-03. Organization of vesicular trafficking in epithelia in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 1998-03. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function in NATURE
  • 1993-08. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol in NATURE
  • 2004-02. The dynamin superfamily: universal membrane tubulation and fission molecules? in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2003-10. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension in NATURE
  • 2003-12. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature in NATURE
  • 1996-03. Budding vesicles in living cells. in SCIENTIFIC AMERICAN
  • 1999-05. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis in NATURE CELL BIOLOGY
  • 2004-04. The biogenesis of multivesicular endosomes in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2001-05. Cell control by membrane–cytoskeleton adhesion in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 1999-05. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring in NATURE CELL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature04396

    DOI

    http://dx.doi.org/10.1038/nature04396

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019599431

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16319878


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Membrane", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytoskeleton", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Lipids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microtubules", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Motor Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/grid.42475.30", 
              "name": [
                "MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McMahon", 
            "givenName": "Harvey T.", 
            "id": "sg:person.01232506114.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232506114.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/grid.42475.30", 
              "name": [
                "MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gallop", 
            "givenName": "Jennifer L.", 
            "id": "sg:person.016470174611.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470174611.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35065645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040769115", 
              "https://doi.org/10.1038/35065645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023613783", 
              "https://doi.org/10.1038/nature01020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35073095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022395966", 
              "https://doi.org/10.1038/35073095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051652430", 
              "https://doi.org/10.1038/nrm1360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001233428", 
              "https://doi.org/10.1038/nature01040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/8997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049662598", 
              "https://doi.org/10.1038/8997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028581867", 
              "https://doi.org/10.1038/nature02108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0396-70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056512621", 
              "https://doi.org/10.1038/scientificamerican0396-70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023258012", 
              "https://doi.org/10.1038/nrm1313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034240506", 
              "https://doi.org/10.1038/nature02013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005614152", 
              "https://doi.org/10.1038/nrm1593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/32440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007887134", 
              "https://doi.org/10.1038/32440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/374190a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021608892", 
              "https://doi.org/10.1038/374190a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/364732a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004374184", 
              "https://doi.org/10.1038/364732a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/9004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002093701", 
              "https://doi.org/10.1038/9004"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-11-30", 
        "datePublishedReg": "2005-11-30", 
        "description": "Membrane curvature is no longer seen as a passive consequence of cellular activity but an active means to create membrane domains and to organize centres for membrane trafficking. Curvature can be dynamically modulated by changes in lipid composition, the oligomerization of curvature scaffolding proteins and the reversible insertion of protein regions that act like wedges in membranes. There is an interplay between curvature-generating and curvature-sensing proteins during vesicle budding. This is seen during vesicle budding and in the formation of microenvironments. On a larger scale, membrane curvature is a prime player in growth, division and movement.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature04396", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7068", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "438"
          }
        ], 
        "keywords": [
          "membrane curvature", 
          "curvature-sensing proteins", 
          "membrane trafficking", 
          "membrane domains", 
          "protein regions", 
          "formation of microenvironments", 
          "cellular activities", 
          "cell membrane", 
          "lipid composition", 
          "passive consequence", 
          "protein", 
          "prime players", 
          "vesicles", 
          "membrane", 
          "trafficking", 
          "oligomerization", 
          "microenvironment", 
          "division", 
          "domain", 
          "growth", 
          "mechanism", 
          "insertion", 
          "interplay", 
          "activity", 
          "large scale", 
          "region", 
          "composition", 
          "formation", 
          "players", 
          "consequences", 
          "changes", 
          "movement", 
          "scale", 
          "reversible insertion", 
          "means", 
          "curvature", 
          "center", 
          "active means", 
          "wedge"
        ], 
        "name": "Membrane curvature and mechanisms of dynamic cell membrane remodelling", 
        "pagination": "590-596", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019599431"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature04396"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16319878"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature04396", 
          "https://app.dimensions.ai/details/publication/pub.1019599431"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_405.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature04396"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04396'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04396'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04396'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04396'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      85 URIs      62 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature04396 schema:about N54bb114a214c40c6b1c6f61620d62ee7
    2 N5f40857d6be641d9b63b807d9da63701
    3 N73f1f55836274ef48cd71b01a294fe9b
    4 N87213bbc241340eab231aa7552a44303
    5 N95192175a543468580e547685a7e9b48
    6 N9d2a6a9234d540fe9108fcfa59bd5516
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 schema:author N947cb7f8b4f746118564798715ab56ac
    10 schema:citation sg:pub.10.1038/32440
    11 sg:pub.10.1038/35065645
    12 sg:pub.10.1038/35073095
    13 sg:pub.10.1038/364732a0
    14 sg:pub.10.1038/374190a0
    15 sg:pub.10.1038/8997
    16 sg:pub.10.1038/9004
    17 sg:pub.10.1038/nature01020
    18 sg:pub.10.1038/nature01040
    19 sg:pub.10.1038/nature02013
    20 sg:pub.10.1038/nature02108
    21 sg:pub.10.1038/nrm1313
    22 sg:pub.10.1038/nrm1360
    23 sg:pub.10.1038/nrm1593
    24 sg:pub.10.1038/scientificamerican0396-70
    25 schema:datePublished 2005-11-30
    26 schema:datePublishedReg 2005-11-30
    27 schema:description Membrane curvature is no longer seen as a passive consequence of cellular activity but an active means to create membrane domains and to organize centres for membrane trafficking. Curvature can be dynamically modulated by changes in lipid composition, the oligomerization of curvature scaffolding proteins and the reversible insertion of protein regions that act like wedges in membranes. There is an interplay between curvature-generating and curvature-sensing proteins during vesicle budding. This is seen during vesicle budding and in the formation of microenvironments. On a larger scale, membrane curvature is a prime player in growth, division and movement.
    28 schema:genre article
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N097964d5addd43a2a232ec1529d1c00c
    31 N0e75d35b003f484ca8bb43f392cf4911
    32 sg:journal.1018957
    33 schema:keywords active means
    34 activity
    35 cell membrane
    36 cellular activities
    37 center
    38 changes
    39 composition
    40 consequences
    41 curvature
    42 curvature-sensing proteins
    43 division
    44 domain
    45 formation
    46 formation of microenvironments
    47 growth
    48 insertion
    49 interplay
    50 large scale
    51 lipid composition
    52 means
    53 mechanism
    54 membrane
    55 membrane curvature
    56 membrane domains
    57 membrane trafficking
    58 microenvironment
    59 movement
    60 oligomerization
    61 passive consequence
    62 players
    63 prime players
    64 protein
    65 protein regions
    66 region
    67 reversible insertion
    68 scale
    69 trafficking
    70 vesicles
    71 wedge
    72 schema:name Membrane curvature and mechanisms of dynamic cell membrane remodelling
    73 schema:pagination 590-596
    74 schema:productId N06f6133681e8459cb7d2feb690b99a29
    75 Nbe6217a78dc14725be81b775c8adbe87
    76 Ne63e51eb1fbb4a42a0fdf63824287dd2
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019599431
    78 https://doi.org/10.1038/nature04396
    79 schema:sdDatePublished 2022-08-04T16:56
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N8ace2843e4f44c329318b727bb48d1d3
    82 schema:url https://doi.org/10.1038/nature04396
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N06f6133681e8459cb7d2feb690b99a29 schema:name dimensions_id
    87 schema:value pub.1019599431
    88 rdf:type schema:PropertyValue
    89 N097964d5addd43a2a232ec1529d1c00c schema:volumeNumber 438
    90 rdf:type schema:PublicationVolume
    91 N0e75d35b003f484ca8bb43f392cf4911 schema:issueNumber 7068
    92 rdf:type schema:PublicationIssue
    93 N358a7adb725e479ebdce3f5aa979f954 rdf:first sg:person.016470174611.51
    94 rdf:rest rdf:nil
    95 N54bb114a214c40c6b1c6f61620d62ee7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Membrane Proteins
    97 rdf:type schema:DefinedTerm
    98 N5f40857d6be641d9b63b807d9da63701 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Microtubules
    100 rdf:type schema:DefinedTerm
    101 N73f1f55836274ef48cd71b01a294fe9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Membrane Lipids
    103 rdf:type schema:DefinedTerm
    104 N87213bbc241340eab231aa7552a44303 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Cytoskeleton
    106 rdf:type schema:DefinedTerm
    107 N8ace2843e4f44c329318b727bb48d1d3 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N947cb7f8b4f746118564798715ab56ac rdf:first sg:person.01232506114.27
    110 rdf:rest N358a7adb725e479ebdce3f5aa979f954
    111 N95192175a543468580e547685a7e9b48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Molecular Motor Proteins
    113 rdf:type schema:DefinedTerm
    114 N9d2a6a9234d540fe9108fcfa59bd5516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Cell Membrane
    116 rdf:type schema:DefinedTerm
    117 Nbe6217a78dc14725be81b775c8adbe87 schema:name doi
    118 schema:value 10.1038/nature04396
    119 rdf:type schema:PropertyValue
    120 Ne63e51eb1fbb4a42a0fdf63824287dd2 schema:name pubmed_id
    121 schema:value 16319878
    122 rdf:type schema:PropertyValue
    123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Biological Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Biochemistry and Cell Biology
    128 rdf:type schema:DefinedTerm
    129 sg:journal.1018957 schema:issn 0028-0836
    130 1476-4687
    131 schema:name Nature
    132 schema:publisher Springer Nature
    133 rdf:type schema:Periodical
    134 sg:person.01232506114.27 schema:affiliation grid-institutes:grid.42475.30
    135 schema:familyName McMahon
    136 schema:givenName Harvey T.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232506114.27
    138 rdf:type schema:Person
    139 sg:person.016470174611.51 schema:affiliation grid-institutes:grid.42475.30
    140 schema:familyName Gallop
    141 schema:givenName Jennifer L.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470174611.51
    143 rdf:type schema:Person
    144 sg:pub.10.1038/32440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007887134
    145 https://doi.org/10.1038/32440
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/35065645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040769115
    148 https://doi.org/10.1038/35065645
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/35073095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022395966
    151 https://doi.org/10.1038/35073095
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/364732a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004374184
    154 https://doi.org/10.1038/364732a0
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/374190a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021608892
    157 https://doi.org/10.1038/374190a0
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/8997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049662598
    160 https://doi.org/10.1038/8997
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/9004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002093701
    163 https://doi.org/10.1038/9004
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nature01020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023613783
    166 https://doi.org/10.1038/nature01020
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nature01040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001233428
    169 https://doi.org/10.1038/nature01040
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature02013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034240506
    172 https://doi.org/10.1038/nature02013
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nature02108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028581867
    175 https://doi.org/10.1038/nature02108
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nrm1313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023258012
    178 https://doi.org/10.1038/nrm1313
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nrm1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051652430
    181 https://doi.org/10.1038/nrm1360
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nrm1593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005614152
    184 https://doi.org/10.1038/nrm1593
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/scientificamerican0396-70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056512621
    187 https://doi.org/10.1038/scientificamerican0396-70
    188 rdf:type schema:CreativeWork
    189 grid-institutes:grid.42475.30 schema:alternateName MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
    190 schema:name MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...