Two-dimensional gas of massless Dirac fermions in graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-11

AUTHORS

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov

ABSTRACT

Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment. More... »

PAGES

197

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

7065

VOLUME

438

Related Patents

  • System For Detecting Rare Cells
  • Graphene/Graphite Polymer Composite Foam Derived From Emulsions Stabilized By Graphene/Graphite Kinetic Trapping
  • Crystalline Graphene And Method Of Making Crystalline Graphene
  • System Of Phonon Spectroscopy
  • Graphene Grown Substrate And Electronic/Photonic Integrated Circuits Using Same
  • Nanodevices For Spintronics And Methods Of Using Same
  • Method Of Manufacture Of Atomically Thin Boron Nitride
  • Method Of Making Devices Including Graphene Layers Epitaxially Grown On Single Crystal Substrates
  • Synthesis Of Materials For Discolouration And Degradation Of Organic Pollutants In Water: Graphene Alone And Graphene Nanocomposite (Graphene-Titanium Dioxide)
  • Electronic Interconnects And Devices With Topological Surface States And Methods For Fabricating Same
  • Apparatus And Methods For Memory Using In-Plane Polarization
  • Method For Synthesis Of High Quality Graphene
  • Devices Including Graphene Layers Epitaxially Grown On Single Crystal Substrates
  • High-Throughput Solution Processing Of Large Scale Graphene And Device Applications
  • Method For Generating Spin Waves
  • Asymmetric Bottom Contacted Device
  • Graphene Quantum Dots, Their Composites And Preparation Of The Same
  • Graphene Formation
  • Preparation Of Graphene By Mechanically Thinning Graphite Materials
  • All Graphene Flash Memory Device
  • Method Of Laser Direct Synthesis Of Graphene
  • Electronic Device, Light-Receiving And Light-Emitting Device, Electronic Integrated Circuit And Optical Integrated Circuit Using The Devices
  • Electronic Interconnects And Devices With Topological Surface States And Methods For Fabricating Same
  • Graphene-Encapsulated Nanoparticle-Based Biosensor For The Selective Detection Of Biomarkers
  • Graphene Solutions
  • Devices With Graphene Layers
  • Semiconductor Device Using Graphene And Method Of Manufacturing The Same
  • Semiconductor Device
  • Growth Methods For Controlled Large-Area Fabrication Of High-Quality Graphene Analogs
  • Synthesis And Applications Of Graphene Based Nanomaterials
  • Complementary Logic Gate Device
  • Microfluidic Device And Method For Detecting Rare Cells
  • Graphene Grown Substrate And Electronic/Photonic Integrated Circuits Using Same
  • Process For Synthesizing Reduced Graphene Oxide On A Substrate From Seedlac
  • Vapor-Trapping Growth Of Single-Crystalline Graphene Flowers
  • Graphene-Based Gas And Bio Sensor With High Sensitivity And Selectivity
  • Method For Passivating Surfaces, Functionalizing Inert Surfaces, Layers And Devices Including Same
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature04233

    DOI

    http://dx.doi.org/10.1038/nature04233

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001061831

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16281030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novoselov", 
            "givenName": "K. S.", 
            "id": "sg:person.01070436546.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070436546.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geim", 
            "givenName": "A. K.", 
            "id": "sg:person.0721730631.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Microelectronics Technology and High Purity Materials", 
              "id": "https://www.grid.ac/institutes/grid.425037.7", 
              "name": [
                "Institute for Microelectronics Technology, 142432 Chernogolovka, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morozov", 
            "givenName": "S. V.", 
            "id": "sg:person.07423561367.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423561367.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "D.", 
            "id": "sg:person.01146544531.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146544531.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radboud University Nijmegen", 
              "id": "https://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "Institute for Molecules and Materials, Radboud University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Katsnelson", 
            "givenName": "M. I.", 
            "id": "sg:person.0721775233.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grigorieva", 
            "givenName": "I. V.", 
            "id": "sg:person.0767105504.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767105504.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Microelectronics Technology and High Purity Materials", 
              "id": "https://www.grid.ac/institutes/grid.425037.7", 
              "name": [
                "Institute for Microelectronics Technology, 142432 Chernogolovka, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dubonos", 
            "givenName": "S. V.", 
            "id": "sg:person.011535264111.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535264111.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Microelectronics Technology and High Purity Materials", 
              "id": "https://www.grid.ac/institutes/grid.425037.7", 
              "name": [
                "Institute for Microelectronics Technology, 142432 Chernogolovka, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Firsov", 
            "givenName": "A. A.", 
            "id": "sg:person.011033016243.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033016243.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevb.71.125124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000498242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.125124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000498242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730110113644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007622624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aop.2006.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011249065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.146801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014724283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.146801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014724283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.2628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027688649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.2628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027688649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.166402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032601641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.166402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032601641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502848102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036398807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0319-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040135892", 
              "https://doi.org/10.1007/978-1-4684-0319-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0319-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040135892", 
              "https://doi.org/10.1007/978-1-4684-0319-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp040650f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041254699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp040650f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041254699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042100217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042100217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.3728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044689268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.3728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044689268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.73.629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044730578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.73.629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044730578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.176803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046029861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.176803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046029861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048111+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048111+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3071145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057909450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.33.3263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060539519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.33.3263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060539519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.245420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.245420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.42.673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.42.673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060807582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060807582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1887/0750306068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099116787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109709972", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-50164-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109709972", 
              "https://doi.org/10.1007/978-3-642-50164-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-50164-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109709972", 
              "https://doi.org/10.1007/978-3-642-50164-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-11", 
        "datePublishedReg": "2005-11-01", 
        "description": "Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schr\u00f6dinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature04233", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7065", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "438"
          }
        ], 
        "name": "Two-dimensional gas of massless Dirac fermions in graphene", 
        "pagination": "197", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "050efc610ba589ad3f544e3495bd0ceb807e2439efbc46037b43c18a9c176c13"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16281030"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature04233"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001061831"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature04233", 
          "https://app.dimensions.ai/details/publication/pub.1001061831"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71714_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature04233"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04233'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04233'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04233'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04233'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature04233 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Na5311b685dc840e38c143e7ce0d5bdd4
    4 schema:citation sg:pub.10.1007/978-1-4684-0319-0
    5 sg:pub.10.1007/978-3-642-50164-7
    6 https://app.dimensions.ai/details/publication/pub.1109709972
    7 https://doi.org/10.1016/j.aop.2006.04.006
    8 https://doi.org/10.1021/jp040650f
    9 https://doi.org/10.1021/nl048111+
    10 https://doi.org/10.1063/1.3071145
    11 https://doi.org/10.1073/pnas.0502848102
    12 https://doi.org/10.1080/00018730110113644
    13 https://doi.org/10.1103/physrevb.33.3263
    14 https://doi.org/10.1103/physrevb.65.245420
    15 https://doi.org/10.1103/physrevb.71.125124
    16 https://doi.org/10.1103/physrevlett.42.673
    17 https://doi.org/10.1103/physrevlett.71.1887
    18 https://doi.org/10.1103/physrevlett.72.2628
    19 https://doi.org/10.1103/physrevlett.79.3728
    20 https://doi.org/10.1103/physrevlett.80.3113
    21 https://doi.org/10.1103/physrevlett.82.2147
    22 https://doi.org/10.1103/physrevlett.93.166402
    23 https://doi.org/10.1103/physrevlett.94.176803
    24 https://doi.org/10.1103/physrevlett.95.146801
    25 https://doi.org/10.1103/revmodphys.73.629
    26 https://doi.org/10.1126/science.1102896
    27 https://doi.org/10.1887/0750306068
    28 schema:datePublished 2005-11
    29 schema:datePublishedReg 2005-11-01
    30 schema:description Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N66a86d1e08b34226b2e51b0c6791d686
    35 Neb70a2ede6be4614a7e7d04dcbdbd9fd
    36 sg:journal.1018957
    37 schema:name Two-dimensional gas of massless Dirac fermions in graphene
    38 schema:pagination 197
    39 schema:productId N2d114055e5e2407e9c497cc005c01717
    40 N4b6512ae7d7d422390a067524e80837f
    41 Nad1779ee62544438a7dfd3cc86ad08d7
    42 Nb9b41f0289914fe28deb6aed5c69e7e6
    43 Nd2e1a94e2b084e328f4d1b4a306ff108
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    45 https://doi.org/10.1038/nature04233
    46 schema:sdDatePublished 2019-04-11T13:01
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nec48a7ca2eb74f0b9841f14c62206a9f
    49 schema:url https://www.nature.com/articles/nature04233
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N104c57b6dbe7440399c4301fafdb8e53 rdf:first sg:person.011535264111.51
    54 rdf:rest N921976fc850246699e4bb30725707799
    55 N2a9ff5e38c4a4ef8a9a15f6f59cb841a rdf:first sg:person.07423561367.62
    56 rdf:rest N7add2f3d91c2429aa32b28bb1fffec81
    57 N2d114055e5e2407e9c497cc005c01717 schema:name readcube_id
    58 schema:value 050efc610ba589ad3f544e3495bd0ceb807e2439efbc46037b43c18a9c176c13
    59 rdf:type schema:PropertyValue
    60 N4518a4e705bd41a9a420de2e7834836f rdf:first sg:person.0767105504.29
    61 rdf:rest N104c57b6dbe7440399c4301fafdb8e53
    62 N4b6512ae7d7d422390a067524e80837f schema:name nlm_unique_id
    63 schema:value 0410462
    64 rdf:type schema:PropertyValue
    65 N66a86d1e08b34226b2e51b0c6791d686 schema:volumeNumber 438
    66 rdf:type schema:PublicationVolume
    67 N7add2f3d91c2429aa32b28bb1fffec81 rdf:first sg:person.01146544531.57
    68 rdf:rest Nc632b63ee9994e1e8cdca92017520d92
    69 N921976fc850246699e4bb30725707799 rdf:first sg:person.011033016243.08
    70 rdf:rest rdf:nil
    71 Na5311b685dc840e38c143e7ce0d5bdd4 rdf:first sg:person.01070436546.24
    72 rdf:rest Nb8c32b2acf764dc9804b929b4e7f728b
    73 Nad1779ee62544438a7dfd3cc86ad08d7 schema:name pubmed_id
    74 schema:value 16281030
    75 rdf:type schema:PropertyValue
    76 Nb8c32b2acf764dc9804b929b4e7f728b rdf:first sg:person.0721730631.45
    77 rdf:rest N2a9ff5e38c4a4ef8a9a15f6f59cb841a
    78 Nb9b41f0289914fe28deb6aed5c69e7e6 schema:name dimensions_id
    79 schema:value pub.1001061831
    80 rdf:type schema:PropertyValue
    81 Nc632b63ee9994e1e8cdca92017520d92 rdf:first sg:person.0721775233.60
    82 rdf:rest N4518a4e705bd41a9a420de2e7834836f
    83 Nd2e1a94e2b084e328f4d1b4a306ff108 schema:name doi
    84 schema:value 10.1038/nature04233
    85 rdf:type schema:PropertyValue
    86 Neb70a2ede6be4614a7e7d04dcbdbd9fd schema:issueNumber 7065
    87 rdf:type schema:PublicationIssue
    88 Nec48a7ca2eb74f0b9841f14c62206a9f schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Physical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1018957 schema:issn 0090-0028
    97 1476-4687
    98 schema:name Nature
    99 rdf:type schema:Periodical
    100 sg:person.01070436546.24 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    101 schema:familyName Novoselov
    102 schema:givenName K. S.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070436546.24
    104 rdf:type schema:Person
    105 sg:person.011033016243.08 schema:affiliation https://www.grid.ac/institutes/grid.425037.7
    106 schema:familyName Firsov
    107 schema:givenName A. A.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033016243.08
    109 rdf:type schema:Person
    110 sg:person.01146544531.57 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    111 schema:familyName Jiang
    112 schema:givenName D.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146544531.57
    114 rdf:type schema:Person
    115 sg:person.011535264111.51 schema:affiliation https://www.grid.ac/institutes/grid.425037.7
    116 schema:familyName Dubonos
    117 schema:givenName S. V.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535264111.51
    119 rdf:type schema:Person
    120 sg:person.0721730631.45 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    121 schema:familyName Geim
    122 schema:givenName A. K.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45
    124 rdf:type schema:Person
    125 sg:person.0721775233.60 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
    126 schema:familyName Katsnelson
    127 schema:givenName M. I.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60
    129 rdf:type schema:Person
    130 sg:person.07423561367.62 schema:affiliation https://www.grid.ac/institutes/grid.425037.7
    131 schema:familyName Morozov
    132 schema:givenName S. V.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423561367.62
    134 rdf:type schema:Person
    135 sg:person.0767105504.29 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    136 schema:familyName Grigorieva
    137 schema:givenName I. V.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767105504.29
    139 rdf:type schema:Person
    140 sg:pub.10.1007/978-1-4684-0319-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040135892
    141 https://doi.org/10.1007/978-1-4684-0319-0
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-3-642-50164-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109709972
    144 https://doi.org/10.1007/978-3-642-50164-7
    145 rdf:type schema:CreativeWork
    146 https://app.dimensions.ai/details/publication/pub.1109709972 schema:CreativeWork
    147 https://doi.org/10.1016/j.aop.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011249065
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1021/jp040650f schema:sameAs https://app.dimensions.ai/details/publication/pub.1041254699
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1021/nl048111+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215838
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1063/1.3071145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057909450
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1080/00018730110113644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007622624
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevb.33.3263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539519
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevb.65.245420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603587
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevb.71.125124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000498242
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevlett.42.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783905
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevlett.71.1887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807582
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevlett.72.2628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027688649
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevlett.79.3728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044689268
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevlett.80.3113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042100217
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevlett.82.2147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819093
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physrevlett.93.166402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032601641
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physrevlett.94.176803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046029861
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrevlett.95.146801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014724283
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/revmodphys.73.629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044730578
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1887/0750306068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099116787
    188 rdf:type schema:CreativeWork
    189 https://www.grid.ac/institutes/grid.425037.7 schema:alternateName Institute of Microelectronics Technology and High Purity Materials
    190 schema:name Institute for Microelectronics Technology, 142432 Chernogolovka, Russia
    191 rdf:type schema:Organization
    192 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
    193 schema:name Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK
    194 rdf:type schema:Organization
    195 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
    196 schema:name Institute for Molecules and Materials, Radboud University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...