Phase-locking in double-point-contact spin-transfer devices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

F. B. Mancoff, N. D. Rizzo, B. N. Engel, S. Tehrani

ABSTRACT

Spin-transfer in nanometre-scale magnetic devices results from the torque on a ferromagnet owing to its interaction with a spin-polarized current and the electrons' spin angular momentum. Experiments have detected either a reversal or high-frequency (GHz) steady-state precession of the magnetization in giant magnetoresistance spin valves and magnetic tunnel junctions with current densities of more than 10(7) A cm(-2). Spin-transfer devices may enable high-density, low-power magnetic random access memory or direct-current-driven nanometre-sized microwave oscillators. Here we show that the magnetization oscillations induced by spin-transfer in two 80-nm-diameter giant-magnetoresistance point contacts in close proximity to each other can phase-lock into a single resonance over a frequency range from approximately <10 to >24 GHz for contact spacings of less than about approximately 200 nm. The output power from these contact pairs with small spacing is approximately twice the total power from more widely spaced (approximately 400 nm and greater) contact pairs that undergo separate resonances, indicating that the closely spaced pairs are phase-locked with zero phase shift. Phase-locking may enable control of large arrays of coupled spin-transfer devices with increased power output for microwave oscillator applications. More... »

PAGES

393

Journal

TITLE

Nature

ISSUE

7057

VOLUME

437

Related Patents

  • Spin-Valve Element And Its Manufacturing Method
  • Spin-Valve Element
  • Magnetic Device Having Stabilized Free Ferromagnetic Layer
  • Magnetic Memory Sensing Circuit
  • Magnetic Device With Integrated Magneto-Resistive Stack
  • Aggregated Spin-Torque Nano-Oscillators
  • Magnetic Shielding In Magnetic Multilayer Structures
  • Magnetic Element Having Low Saturation Magnetization
  • Magnetic Tunnel Junction Having Diffusion Stop Layer
  • Current-Switched Spin-Transfer Magnetic Devices With Reduced Spin-Transfer Switching Current Density
  • Method For Manufacturing Non-Volatile Magnetic Memory
  • Spin Valve Element And Method Of Driving Same
  • Aggregated Spin-Torque Nano-Oscillators
  • Spin Valve Element And Method Of Manufacturing Same
  • Low Resistance High-Tmr Magnetic Tunnel Junction And Process For Fabrication Thereof
  • Magnetic Element Having Low Saturation Magnetization
  • Spin-Torque Devices
  • High Frequency Field Assisted Write Device
  • Magnetic Device Having Multilayered Free Ferromagnetic Layer
  • Current-Confined Effect Of Magnetic Nano-Current-Channel (Ncc) For Magnetic Random Access Memory (Mram)
  • Magnetic Devices Having Oxide Antiferromagnetic Layer Next To Free Ferromagnetic Layer
  • Devices And Circuits Based On Magnetic Tunnel Junctions Utilizing A Multilayer Barrier
  • Spin-Valve Element And Its Manufacturing Method
  • Spin Valve Element And Method Of Manufacturing Same
  • Method For Manufacturing High Density Non-Volatile Magnetic Memory
  • Magnetic Shielding In Magnetic Multilayer Structures
  • Programmable And Redundant Circuitry Based On Magnetic Tunnel Junction (Mtj)
  • Method And Apparatus For Write Enable And Inhibit For High Density Spin Torque Three Dimensional (3d) Memory Arrays
  • Spin-Valve Element And Its Manufacturing Method
  • Spin Valve Element, And Its Driving Method
  • Spin Oscillator Device
  • Oscillating-Field Assisted Spin Torque Switching Of A Magnetic Tunnel Junction Memory Element
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature04036

    DOI

    http://dx.doi.org/10.1038/nature04036

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032484610

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16163352


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mancoff", 
            "givenName": "F. B.", 
            "id": "sg:person.010636035231.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636035231.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rizzo", 
            "givenName": "N. D.", 
            "id": "sg:person.012322740145.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322740145.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Engel", 
            "givenName": "B. N.", 
            "id": "sg:person.012652103313.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652103313.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tehrani", 
            "givenName": "S.", 
            "id": "sg:person.016450362657.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450362657.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.84.3149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002331710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.3149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002331710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006825169", 
              "https://doi.org/10.1038/nature01967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006825169", 
              "https://doi.org/10.1038/nature01967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007328853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.69.184406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015823087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.69.184406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015823087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35017512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016807729", 
              "https://doi.org/10.1038/35017512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35017512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016807729", 
              "https://doi.org/10.1038/35017512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.100406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019986230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.100406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019986230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.027201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024816905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.027201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024816905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1707228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026652974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.146803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026874009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.146803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026874009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039970430", 
              "https://doi.org/10.1038/nmat1120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039970430", 
              "https://doi.org/10.1038/nmat1120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.036601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042651367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.036601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042651367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1819516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045469747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050671022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050671022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1374230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057700290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1506794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057714045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1604936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057724978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1682872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057758600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1829140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057825282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.369932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058003817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.104425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060612975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.104425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060612975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.026601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060828635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.026601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060828635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.2004.840847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061677253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1105722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5429.867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062566192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i1999-00213-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064235430"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-09", 
        "datePublishedReg": "2005-09-01", 
        "description": "Spin-transfer in nanometre-scale magnetic devices results from the torque on a ferromagnet owing to its interaction with a spin-polarized current and the electrons' spin angular momentum. Experiments have detected either a reversal or high-frequency (GHz) steady-state precession of the magnetization in giant magnetoresistance spin valves and magnetic tunnel junctions with current densities of more than 10(7) A cm(-2). Spin-transfer devices may enable high-density, low-power magnetic random access memory or direct-current-driven nanometre-sized microwave oscillators. Here we show that the magnetization oscillations induced by spin-transfer in two 80-nm-diameter giant-magnetoresistance point contacts in close proximity to each other can phase-lock into a single resonance over a frequency range from approximately <10 to >24 GHz for contact spacings of less than about approximately 200 nm. The output power from these contact pairs with small spacing is approximately twice the total power from more widely spaced (approximately 400 nm and greater) contact pairs that undergo separate resonances, indicating that the closely spaced pairs are phase-locked with zero phase shift. Phase-locking may enable control of large arrays of coupled spin-transfer devices with increased power output for microwave oscillator applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature04036", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7057", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "437"
          }
        ], 
        "name": "Phase-locking in double-point-contact spin-transfer devices", 
        "pagination": "393", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9ac0eb44c6df34297902764a35e923bf31e7753fa00949874c3192685dcf3020"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16163352"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature04036"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032484610"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature04036", 
          "https://app.dimensions.ai/details/publication/pub.1032484610"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54003_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature04036"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04036'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04036'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04036'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04036'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature04036 schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author N04918af9be71489bb36add228b3d0295
    4 schema:citation sg:pub.10.1038/35017512
    5 sg:pub.10.1038/nature01967
    6 sg:pub.10.1038/nmat1120
    7 https://doi.org/10.1016/0304-8853(96)00062-5
    8 https://doi.org/10.1063/1.1374230
    9 https://doi.org/10.1063/1.1506794
    10 https://doi.org/10.1063/1.1604936
    11 https://doi.org/10.1063/1.1682872
    12 https://doi.org/10.1063/1.1707228
    13 https://doi.org/10.1063/1.1819516
    14 https://doi.org/10.1063/1.1829140
    15 https://doi.org/10.1063/1.369932
    16 https://doi.org/10.1103/physrevb.54.9353
    17 https://doi.org/10.1103/physrevb.69.184406
    18 https://doi.org/10.1103/physrevb.70.100406
    19 https://doi.org/10.1103/physrevb.71.104425
    20 https://doi.org/10.1103/physrevlett.84.3149
    21 https://doi.org/10.1103/physrevlett.91.067203
    22 https://doi.org/10.1103/physrevlett.91.146803
    23 https://doi.org/10.1103/physrevlett.92.027201
    24 https://doi.org/10.1103/physrevlett.93.026601
    25 https://doi.org/10.1103/physrevlett.93.036601
    26 https://doi.org/10.1109/tmag.2004.840847
    27 https://doi.org/10.1126/science.1105722
    28 https://doi.org/10.1126/science.285.5429.867
    29 https://doi.org/10.1209/epl/i1999-00213-1
    30 schema:datePublished 2005-09
    31 schema:datePublishedReg 2005-09-01
    32 schema:description Spin-transfer in nanometre-scale magnetic devices results from the torque on a ferromagnet owing to its interaction with a spin-polarized current and the electrons' spin angular momentum. Experiments have detected either a reversal or high-frequency (GHz) steady-state precession of the magnetization in giant magnetoresistance spin valves and magnetic tunnel junctions with current densities of more than 10(7) A cm(-2). Spin-transfer devices may enable high-density, low-power magnetic random access memory or direct-current-driven nanometre-sized microwave oscillators. Here we show that the magnetization oscillations induced by spin-transfer in two 80-nm-diameter giant-magnetoresistance point contacts in close proximity to each other can phase-lock into a single resonance over a frequency range from approximately <10 to >24 GHz for contact spacings of less than about approximately 200 nm. The output power from these contact pairs with small spacing is approximately twice the total power from more widely spaced (approximately 400 nm and greater) contact pairs that undergo separate resonances, indicating that the closely spaced pairs are phase-locked with zero phase shift. Phase-locking may enable control of large arrays of coupled spin-transfer devices with increased power output for microwave oscillator applications.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N4c5a2947986846c19ef5b41f805646bb
    37 Nadcaed556e4e469b9f187476c136d958
    38 sg:journal.1018957
    39 schema:name Phase-locking in double-point-contact spin-transfer devices
    40 schema:pagination 393
    41 schema:productId N64c4f692b0794b6ba44a4d27156670c5
    42 N9bb57876eedf453e9371f5ee6fe25bd6
    43 Na394624dc9e24c649c74eef608fe84bd
    44 Na9267336f47d49a28c48fbc508766a79
    45 Ne8ce77a0776f402fbc6e8d9b1fb78ec6
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032484610
    47 https://doi.org/10.1038/nature04036
    48 schema:sdDatePublished 2019-04-11T12:14
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher Nc4db7e88be8941bb8b8790a932060b20
    51 schema:url https://www.nature.com/articles/nature04036
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N04918af9be71489bb36add228b3d0295 rdf:first sg:person.010636035231.13
    56 rdf:rest N2fda649459414979bacf1b4552a04f56
    57 N07c0ab3ba0134b35b53d0992107241b8 rdf:first sg:person.012652103313.28
    58 rdf:rest Nbd50ff7c62534f9083f6fcc529e1e13e
    59 N2fda649459414979bacf1b4552a04f56 rdf:first sg:person.012322740145.38
    60 rdf:rest N07c0ab3ba0134b35b53d0992107241b8
    61 N4c5a2947986846c19ef5b41f805646bb schema:volumeNumber 437
    62 rdf:type schema:PublicationVolume
    63 N64c4f692b0794b6ba44a4d27156670c5 schema:name pubmed_id
    64 schema:value 16163352
    65 rdf:type schema:PropertyValue
    66 N8958728705674b49ad4a1c26697b30b2 schema:name Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA
    67 rdf:type schema:Organization
    68 N8ce0e40c6918411f8ae231e273605497 schema:name Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA
    69 rdf:type schema:Organization
    70 N9bb57876eedf453e9371f5ee6fe25bd6 schema:name dimensions_id
    71 schema:value pub.1032484610
    72 rdf:type schema:PropertyValue
    73 Na394624dc9e24c649c74eef608fe84bd schema:name doi
    74 schema:value 10.1038/nature04036
    75 rdf:type schema:PropertyValue
    76 Na9267336f47d49a28c48fbc508766a79 schema:name readcube_id
    77 schema:value 9ac0eb44c6df34297902764a35e923bf31e7753fa00949874c3192685dcf3020
    78 rdf:type schema:PropertyValue
    79 Nadcaed556e4e469b9f187476c136d958 schema:issueNumber 7057
    80 rdf:type schema:PublicationIssue
    81 Nbd50ff7c62534f9083f6fcc529e1e13e rdf:first sg:person.016450362657.33
    82 rdf:rest rdf:nil
    83 Nc4db7e88be8941bb8b8790a932060b20 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 Nd5b2c278c6e84d86ba327a2480bbecb4 schema:name Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA
    86 rdf:type schema:Organization
    87 Ne8ce77a0776f402fbc6e8d9b1fb78ec6 schema:name nlm_unique_id
    88 schema:value 0410462
    89 rdf:type schema:PropertyValue
    90 Nf5de0c0e213943b2871193ff0153f1d5 schema:name Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, Arizona 85224, USA
    91 rdf:type schema:Organization
    92 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Technology
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Communications Technologies
    97 rdf:type schema:DefinedTerm
    98 sg:journal.1018957 schema:issn 0090-0028
    99 1476-4687
    100 schema:name Nature
    101 rdf:type schema:Periodical
    102 sg:person.010636035231.13 schema:affiliation Nd5b2c278c6e84d86ba327a2480bbecb4
    103 schema:familyName Mancoff
    104 schema:givenName F. B.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636035231.13
    106 rdf:type schema:Person
    107 sg:person.012322740145.38 schema:affiliation N8958728705674b49ad4a1c26697b30b2
    108 schema:familyName Rizzo
    109 schema:givenName N. D.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322740145.38
    111 rdf:type schema:Person
    112 sg:person.012652103313.28 schema:affiliation N8ce0e40c6918411f8ae231e273605497
    113 schema:familyName Engel
    114 schema:givenName B. N.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652103313.28
    116 rdf:type schema:Person
    117 sg:person.016450362657.33 schema:affiliation Nf5de0c0e213943b2871193ff0153f1d5
    118 schema:familyName Tehrani
    119 schema:givenName S.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450362657.33
    121 rdf:type schema:Person
    122 sg:pub.10.1038/35017512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016807729
    123 https://doi.org/10.1038/35017512
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/nature01967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006825169
    126 https://doi.org/10.1038/nature01967
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/nmat1120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970430
    129 https://doi.org/10.1038/nmat1120
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1063/1.1374230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700290
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1063/1.1506794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057714045
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.1604936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057724978
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.1682872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057758600
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.1707228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026652974
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1063/1.1819516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469747
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.1829140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057825282
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1063/1.369932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058003817
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevb.69.184406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015823087
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevb.70.100406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019986230
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevb.71.104425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060612975
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevlett.91.067203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050671022
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevlett.91.146803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026874009
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevlett.92.027201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024816905
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevlett.93.026601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828635
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevlett.93.036601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042651367
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tmag.2004.840847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061677253
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1126/science.1105722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451261
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1209/epl/i1999-00213-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235430
    176 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...