Mutual phase-locking of microwave spin torque nano-oscillators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

Shehzaad Kaka, Matthew R. Pufall, William H. Rippard, Thomas J. Silva, Stephen E. Russek, Jordan A. Katine

ABSTRACT

The spin torque effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current. This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements. The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level (on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators. Here we show that two STNOs in close proximity mutually phase-lock-that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems. The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements (phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications. More... »

PAGES

389

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature04035

DOI

http://dx.doi.org/10.1038/nature04035

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022805974

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16163351


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Electromagnetic Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaka", 
        "givenName": "Shehzaad", 
        "id": "sg:person.0604402667.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604402667.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Electromagnetic Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pufall", 
        "givenName": "Matthew R.", 
        "id": "sg:person.0652516067.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652516067.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Electromagnetic Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rippard", 
        "givenName": "William H.", 
        "id": "sg:person.0720631267.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720631267.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Electromagnetic Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "Thomas J.", 
        "id": "sg:person.01065153131.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065153131.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Electromagnetic Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russek", 
        "givenName": "Stephen E.", 
        "id": "sg:person.01035057667.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035057667.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hitachi San Jose Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katine", 
        "givenName": "Jordan A.", 
        "id": "sg:person.0722620357.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722620357.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2001.0888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004041765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006825169", 
          "https://doi.org/10.1038/nature01967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006825169", 
          "https://doi.org/10.1038/nature01967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.184406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015823087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.184406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015823087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016807729", 
          "https://doi.org/10.1038/35017512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016807729", 
          "https://doi.org/10.1038/35017512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(99)00043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017292149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.100406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019986230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.100406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019986230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46097-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024577627", 
          "https://doi.org/10.1007/3-540-46097-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46097-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024577627", 
          "https://doi.org/10.1007/3-540-46097-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024816905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024816905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.104993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057652561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1654250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057732276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.067203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.067203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.067203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.102960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.247926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061123397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.375264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061124290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jrproc.1956.274950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061314054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2004.831608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061328876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.159.3821.1319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062493554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-09", 
    "datePublishedReg": "2005-09-01", 
    "description": "The spin torque effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current. This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements. The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level (on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators. Here we show that two STNOs in close proximity mutually phase-lock-that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems. The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements (phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature04035", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7057", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "437"
      }
    ], 
    "name": "Mutual phase-locking of microwave spin torque nano-oscillators", 
    "pagination": "389", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ca7123111a947da37aeb15bf2876dea30cf513341b46113f2a47dfc958378e2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16163351"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature04035"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022805974"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature04035", 
      "https://app.dimensions.ai/details/publication/pub.1022805974"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53999_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature04035"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04035'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04035'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04035'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04035'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature04035 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Ne0a84ee3ac8f4deaa7414b7160399992
4 schema:citation sg:pub.10.1007/3-540-46097-7_4
5 sg:pub.10.1038/35017512
6 sg:pub.10.1038/nature01967
7 https://doi.org/10.1016/0304-8853(96)00062-5
8 https://doi.org/10.1016/s0304-8853(99)00043-8
9 https://doi.org/10.1063/1.104993
10 https://doi.org/10.1063/1.1654250
11 https://doi.org/10.1098/rspa.2001.0888
12 https://doi.org/10.1103/physrevb.54.9353
13 https://doi.org/10.1103/physrevb.69.184406
14 https://doi.org/10.1103/physrevb.70.100406
15 https://doi.org/10.1103/physrevlett.61.2472
16 https://doi.org/10.1103/physrevlett.76.404
17 https://doi.org/10.1103/physrevlett.84.3149
18 https://doi.org/10.1103/physrevlett.92.027201
19 https://doi.org/10.1103/physrevlett.95.067203
20 https://doi.org/10.1109/22.102960
21 https://doi.org/10.1109/22.247926
22 https://doi.org/10.1109/22.375264
23 https://doi.org/10.1109/jrproc.1956.274950
24 https://doi.org/10.1109/jssc.2004.831608
25 https://doi.org/10.1126/science.1065389
26 https://doi.org/10.1126/science.1105722
27 https://doi.org/10.1126/science.159.3821.1319
28 schema:datePublished 2005-09
29 schema:datePublishedReg 2005-09-01
30 schema:description The spin torque effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current. This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements. The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level (on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators. Here we show that two STNOs in close proximity mutually phase-lock-that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems. The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements (phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N2ee74e8558e54eee8c7c3d1eec2dca1f
35 Nff33983024914aae9c4cae2dd497b05a
36 sg:journal.1018957
37 schema:name Mutual phase-locking of microwave spin torque nano-oscillators
38 schema:pagination 389
39 schema:productId N03aba7090537404f9d43313f139751cc
40 N0d26c1a8fa5d4dde9e8727ea26a7d2a2
41 N1ab36c8e6d9a41e9805326b91294d248
42 N70effecacddd4b3d942581bf6dd01665
43 N8f25c28d731946be9ef92951370d9252
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022805974
45 https://doi.org/10.1038/nature04035
46 schema:sdDatePublished 2019-04-11T12:13
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N50808a3029d540fc82daef698b3461be
49 schema:url https://www.nature.com/articles/nature04035
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N03aba7090537404f9d43313f139751cc schema:name pubmed_id
54 schema:value 16163351
55 rdf:type schema:PropertyValue
56 N0d26c1a8fa5d4dde9e8727ea26a7d2a2 schema:name nlm_unique_id
57 schema:value 0410462
58 rdf:type schema:PropertyValue
59 N0def3d39c1ae482a8c8aac72220dc7d4 rdf:first sg:person.0720631267.30
60 rdf:rest N29987356365d4da0a1833609578d873f
61 N1ab36c8e6d9a41e9805326b91294d248 schema:name dimensions_id
62 schema:value pub.1022805974
63 rdf:type schema:PropertyValue
64 N29987356365d4da0a1833609578d873f rdf:first sg:person.01065153131.94
65 rdf:rest N5619ca1a143642698aa4234058bfd3f1
66 N2ee74e8558e54eee8c7c3d1eec2dca1f schema:volumeNumber 437
67 rdf:type schema:PublicationVolume
68 N50808a3029d540fc82daef698b3461be schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N5619ca1a143642698aa4234058bfd3f1 rdf:first sg:person.01035057667.37
71 rdf:rest Ncece6d97ef2b49c2a4d1dd6170ab7cab
72 N70effecacddd4b3d942581bf6dd01665 schema:name doi
73 schema:value 10.1038/nature04035
74 rdf:type schema:PropertyValue
75 N8f25c28d731946be9ef92951370d9252 schema:name readcube_id
76 schema:value 6ca7123111a947da37aeb15bf2876dea30cf513341b46113f2a47dfc958378e2
77 rdf:type schema:PropertyValue
78 Nad9ff45f93dc4ab4b09b25476568c7fa schema:name Hitachi San Jose Research Center, San Jose, California 95120, USA
79 rdf:type schema:Organization
80 Nc5a05d1ad87a4f1995775935e34a85c6 rdf:first sg:person.0652516067.85
81 rdf:rest N0def3d39c1ae482a8c8aac72220dc7d4
82 Ncece6d97ef2b49c2a4d1dd6170ab7cab rdf:first sg:person.0722620357.25
83 rdf:rest rdf:nil
84 Ne0a84ee3ac8f4deaa7414b7160399992 rdf:first sg:person.0604402667.31
85 rdf:rest Nc5a05d1ad87a4f1995775935e34a85c6
86 Nff33983024914aae9c4cae2dd497b05a schema:issueNumber 7057
87 rdf:type schema:PublicationIssue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
92 schema:name Electrical and Electronic Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1018957 schema:issn 0090-0028
95 1476-4687
96 schema:name Nature
97 rdf:type schema:Periodical
98 sg:person.01035057667.37 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
99 schema:familyName Russek
100 schema:givenName Stephen E.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035057667.37
102 rdf:type schema:Person
103 sg:person.01065153131.94 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
104 schema:familyName Silva
105 schema:givenName Thomas J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065153131.94
107 rdf:type schema:Person
108 sg:person.0604402667.31 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
109 schema:familyName Kaka
110 schema:givenName Shehzaad
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604402667.31
112 rdf:type schema:Person
113 sg:person.0652516067.85 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
114 schema:familyName Pufall
115 schema:givenName Matthew R.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652516067.85
117 rdf:type schema:Person
118 sg:person.0720631267.30 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
119 schema:familyName Rippard
120 schema:givenName William H.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720631267.30
122 rdf:type schema:Person
123 sg:person.0722620357.25 schema:affiliation Nad9ff45f93dc4ab4b09b25476568c7fa
124 schema:familyName Katine
125 schema:givenName Jordan A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722620357.25
127 rdf:type schema:Person
128 sg:pub.10.1007/3-540-46097-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024577627
129 https://doi.org/10.1007/3-540-46097-7_4
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/35017512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016807729
132 https://doi.org/10.1038/35017512
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature01967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006825169
135 https://doi.org/10.1038/nature01967
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0304-8853(99)00043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017292149
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.104993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057652561
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.1654250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057732276
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1098/rspa.2001.0888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004041765
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.69.184406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015823087
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.70.100406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019986230
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.76.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813226
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.92.027201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024816905
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.95.067203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830706
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/22.102960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122471
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/22.247926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061123397
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/22.375264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061124290
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/jrproc.1956.274950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061314054
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/jssc.2004.831608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061328876
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1105722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451261
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.159.3821.1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062493554
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
180 schema:name Electromagnetic Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...