Ontology type: schema:ScholarlyArticle
2005-08
AUTHORSWeining Man, Mischa Megens, Paul J. Steinhardt, P. M. Chaikin
ABSTRACTQuasicrystals for photonicsQuasicrystalline structures may have optical bandgap properties — frequency ranges in which the propagation of light is forbidden — that will make them well suited for applications in which photonic crystals are normally used. Previous work has focused on one- and two-dimensional quasicrystals for which exact theoretical calculations can be made. But when it comes to three dimensions, computation of the optical properties remains a tough challenge. Man et al. tackled the three-dimensional case experimentally using a large photonic quasicrystal made of plastic. They find that the periodic structure yields surprisingly simple spectra, and the resulting structural insights confirm that quasicrystals are excellent candidates for photonic bandgap materials. More... »
PAGES993-996
http://scigraph.springernature.com/pub.10.1038/nature03977
DOIhttp://dx.doi.org/10.1038/nature03977
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032001790
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/16107842
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Optical Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA",
"id": "http://www.grid.ac/institutes/grid.16750.35",
"name": [
"Department of Physics",
"Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA"
],
"type": "Organization"
},
"familyName": "Man",
"givenName": "Weining",
"id": "sg:person.0725047135.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725047135.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands",
"id": "http://www.grid.ac/institutes/grid.417284.c",
"name": [
"Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands"
],
"type": "Organization"
},
"familyName": "Megens",
"givenName": "Mischa",
"id": "sg:person.01107531552.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107531552.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Physics"
],
"type": "Organization"
},
"familyName": "Steinhardt",
"givenName": "Paul J.",
"id": "sg:person.07440637376.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440637376.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA",
"id": "http://www.grid.ac/institutes/grid.137628.9",
"name": [
"Department of Physics",
"Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA",
"Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA"
],
"type": "Organization"
},
"familyName": "Chaikin",
"givenName": "P. M.",
"id": "sg:person.016355051605.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/36514",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041378319",
"https://doi.org/10.1038/36514"
],
"type": "CreativeWork"
}
],
"datePublished": "2005-08",
"datePublishedReg": "2005-08-01",
"description": "Quasicrystals for photonicsQuasicrystalline structures may have optical bandgap properties \u2014 frequency ranges in which the propagation of light is forbidden \u2014 that will make them well suited for applications in which photonic crystals are normally used. Previous work has focused on one- and two-dimensional quasicrystals for which exact theoretical calculations can be made. But when it comes to three dimensions, computation of the optical properties remains a tough challenge. Man et al. tackled the three-dimensional case experimentally using a large photonic quasicrystal made of plastic. They find that the periodic structure yields surprisingly simple spectra, and the resulting structural insights confirm that quasicrystals are excellent candidates for photonic bandgap materials.",
"genre": "article",
"id": "sg:pub.10.1038/nature03977",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7053",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "436"
}
],
"keywords": [
"propagation of light",
"photonic bandgap materials",
"exact theoretical calculations",
"photonic quasicrystals",
"photonic crystals",
"optical properties",
"photonic properties",
"two-dimensional quasicrystals",
"bandgap materials",
"theoretical calculations",
"experimental measurements",
"simple spectrum",
"quasicrystals",
"icosahedral quasicrystals",
"three-dimensional case",
"excellent candidate",
"structure yields",
"spectra",
"crystals",
"calculations",
"properties",
"light",
"measurements",
"propagation",
"previous work",
"structure",
"range",
"candidates",
"materials",
"applications",
"computation",
"yield",
"structural insights",
"dimensions",
"work",
"tough challenge",
"insights",
"cases",
"plastic",
"challenges"
],
"name": "Experimental measurement of the photonic properties of icosahedral quasicrystals",
"pagination": "993-996",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032001790"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nature03977"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"16107842"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nature03977",
"https://app.dimensions.ai/details/publication/pub.1032001790"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_397.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/nature03977"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03977'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03977'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03977'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03977'
This table displays all metadata directly associated to this object as RDF triples.
139 TRIPLES
22 PREDICATES
68 URIs
59 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/nature03977 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0205 |
3 | ″ | schema:author | N25ef3c94e739444996cded379c92d138 |
4 | ″ | schema:citation | sg:pub.10.1038/36514 |
5 | ″ | schema:datePublished | 2005-08 |
6 | ″ | schema:datePublishedReg | 2005-08-01 |
7 | ″ | schema:description | Quasicrystals for photonicsQuasicrystalline structures may have optical bandgap properties — frequency ranges in which the propagation of light is forbidden — that will make them well suited for applications in which photonic crystals are normally used. Previous work has focused on one- and two-dimensional quasicrystals for which exact theoretical calculations can be made. But when it comes to three dimensions, computation of the optical properties remains a tough challenge. Man et al. tackled the three-dimensional case experimentally using a large photonic quasicrystal made of plastic. They find that the periodic structure yields surprisingly simple spectra, and the resulting structural insights confirm that quasicrystals are excellent candidates for photonic bandgap materials. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Ndf6e4f89246242228b897c80483d0017 |
12 | ″ | ″ | Nf0422b949a1d4ab18fa210e514f4afe8 |
13 | ″ | ″ | sg:journal.1018957 |
14 | ″ | schema:keywords | applications |
15 | ″ | ″ | bandgap materials |
16 | ″ | ″ | calculations |
17 | ″ | ″ | candidates |
18 | ″ | ″ | cases |
19 | ″ | ″ | challenges |
20 | ″ | ″ | computation |
21 | ″ | ″ | crystals |
22 | ″ | ″ | dimensions |
23 | ″ | ″ | exact theoretical calculations |
24 | ″ | ″ | excellent candidate |
25 | ″ | ″ | experimental measurements |
26 | ″ | ″ | icosahedral quasicrystals |
27 | ″ | ″ | insights |
28 | ″ | ″ | light |
29 | ″ | ″ | materials |
30 | ″ | ″ | measurements |
31 | ″ | ″ | optical properties |
32 | ″ | ″ | photonic bandgap materials |
33 | ″ | ″ | photonic crystals |
34 | ″ | ″ | photonic properties |
35 | ″ | ″ | photonic quasicrystals |
36 | ″ | ″ | plastic |
37 | ″ | ″ | previous work |
38 | ″ | ″ | propagation |
39 | ″ | ″ | propagation of light |
40 | ″ | ″ | properties |
41 | ″ | ″ | quasicrystals |
42 | ″ | ″ | range |
43 | ″ | ″ | simple spectrum |
44 | ″ | ″ | spectra |
45 | ″ | ″ | structural insights |
46 | ″ | ″ | structure |
47 | ″ | ″ | structure yields |
48 | ″ | ″ | theoretical calculations |
49 | ″ | ″ | three-dimensional case |
50 | ″ | ″ | tough challenge |
51 | ″ | ″ | two-dimensional quasicrystals |
52 | ″ | ″ | work |
53 | ″ | ″ | yield |
54 | ″ | schema:name | Experimental measurement of the photonic properties of icosahedral quasicrystals |
55 | ″ | schema:pagination | 993-996 |
56 | ″ | schema:productId | N095988a0aaac432c88f2620a31a7d294 |
57 | ″ | ″ | N22a84aa06c9b40a3aa38e2591fd98468 |
58 | ″ | ″ | Nf8c5b7fd6a5f405d878fff34398d32d2 |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032001790 |
60 | ″ | ″ | https://doi.org/10.1038/nature03977 |
61 | ″ | schema:sdDatePublished | 2022-05-20T07:23 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | Nc595101c3896490e8df704936ad5bd4d |
64 | ″ | schema:url | https://doi.org/10.1038/nature03977 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N095988a0aaac432c88f2620a31a7d294 | schema:name | dimensions_id |
69 | ″ | schema:value | pub.1032001790 |
70 | ″ | rdf:type | schema:PropertyValue |
71 | N0ce32e0960c243b689e495c3b5b9658f | rdf:first | sg:person.01107531552.94 |
72 | ″ | rdf:rest | Ne8421abfec66494aba95b97f3d7c8cd0 |
73 | N22a84aa06c9b40a3aa38e2591fd98468 | schema:name | pubmed_id |
74 | ″ | schema:value | 16107842 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | N25ef3c94e739444996cded379c92d138 | rdf:first | sg:person.0725047135.28 |
77 | ″ | rdf:rest | N0ce32e0960c243b689e495c3b5b9658f |
78 | Nc595101c3896490e8df704936ad5bd4d | schema:name | Springer Nature - SN SciGraph project |
79 | ″ | rdf:type | schema:Organization |
80 | Ncbce92713e574f4a896aedd539005aa3 | rdf:first | sg:person.016355051605.83 |
81 | ″ | rdf:rest | rdf:nil |
82 | Ndf6e4f89246242228b897c80483d0017 | schema:volumeNumber | 436 |
83 | ″ | rdf:type | schema:PublicationVolume |
84 | Ne8421abfec66494aba95b97f3d7c8cd0 | rdf:first | sg:person.07440637376.85 |
85 | ″ | rdf:rest | Ncbce92713e574f4a896aedd539005aa3 |
86 | Nf0422b949a1d4ab18fa210e514f4afe8 | schema:issueNumber | 7053 |
87 | ″ | rdf:type | schema:PublicationIssue |
88 | Nf8c5b7fd6a5f405d878fff34398d32d2 | schema:name | doi |
89 | ″ | schema:value | 10.1038/nature03977 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Physical Sciences |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0205 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Optical Physics |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:journal.1018957 | schema:issn | 0028-0836 |
98 | ″ | ″ | 1476-4687 |
99 | ″ | schema:name | Nature |
100 | ″ | schema:publisher | Springer Nature |
101 | ″ | rdf:type | schema:Periodical |
102 | sg:person.01107531552.94 | schema:affiliation | grid-institutes:grid.417284.c |
103 | ″ | schema:familyName | Megens |
104 | ″ | schema:givenName | Mischa |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107531552.94 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.016355051605.83 | schema:affiliation | grid-institutes:grid.137628.9 |
108 | ″ | schema:familyName | Chaikin |
109 | ″ | schema:givenName | P. M. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.0725047135.28 | schema:affiliation | grid-institutes:grid.16750.35 |
113 | ″ | schema:familyName | Man |
114 | ″ | schema:givenName | Weining |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725047135.28 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.07440637376.85 | schema:affiliation | grid-institutes:None |
118 | ″ | schema:familyName | Steinhardt |
119 | ″ | schema:givenName | Paul J. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440637376.85 |
121 | ″ | rdf:type | schema:Person |
122 | sg:pub.10.1038/36514 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041378319 |
123 | ″ | ″ | https://doi.org/10.1038/36514 |
124 | ″ | rdf:type | schema:CreativeWork |
125 | grid-institutes:None | schema:alternateName | Department of Physics |
126 | ″ | schema:name | Department of Physics |
127 | ″ | rdf:type | schema:Organization |
128 | grid-institutes:grid.137628.9 | schema:alternateName | Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA |
129 | ″ | schema:name | Department of Physics |
130 | ″ | ″ | Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA |
131 | ″ | ″ | Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA |
132 | ″ | rdf:type | schema:Organization |
133 | grid-institutes:grid.16750.35 | schema:alternateName | Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA |
134 | ″ | schema:name | Department of Physics |
135 | ″ | ″ | Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA |
136 | ″ | rdf:type | schema:Organization |
137 | grid-institutes:grid.417284.c | schema:alternateName | Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands |
138 | ″ | schema:name | Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands |
139 | ″ | rdf:type | schema:Organization |