Experimental measurement of the photonic properties of icosahedral quasicrystals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-08

AUTHORS

Weining Man, Mischa Megens, Paul J. Steinhardt, P. M. Chaikin

ABSTRACT

Quasicrystals for photonicsQuasicrystalline structures may have optical bandgap properties — frequency ranges in which the propagation of light is forbidden — that will make them well suited for applications in which photonic crystals are normally used. Previous work has focused on one- and two-dimensional quasicrystals for which exact theoretical calculations can be made. But when it comes to three dimensions, computation of the optical properties remains a tough challenge. Man et al. tackled the three-dimensional case experimentally using a large photonic quasicrystal made of plastic. They find that the periodic structure yields surprisingly simple spectra, and the resulting structural insights confirm that quasicrystals are excellent candidates for photonic bandgap materials. More... »

PAGES

993-996

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature03977

DOI

http://dx.doi.org/10.1038/nature03977

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032001790

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16107842


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics", 
            "Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Man", 
        "givenName": "Weining", 
        "id": "sg:person.0725047135.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725047135.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.417284.c", 
          "name": [
            "Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Megens", 
        "givenName": "Mischa", 
        "id": "sg:person.01107531552.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107531552.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Physics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinhardt", 
        "givenName": "Paul J.", 
        "id": "sg:person.07440637376.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440637376.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Physics", 
            "Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA", 
            "Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaikin", 
        "givenName": "P. M.", 
        "id": "sg:person.016355051605.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/36514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041378319", 
          "https://doi.org/10.1038/36514"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-08", 
    "datePublishedReg": "2005-08-01", 
    "description": "Quasicrystals for photonicsQuasicrystalline structures may have optical bandgap properties \u2014 frequency ranges in which the propagation of light is forbidden \u2014 that will make them well suited for applications in which photonic crystals are normally used. Previous work has focused on one- and two-dimensional quasicrystals for which exact theoretical calculations can be made. But when it comes to three dimensions, computation of the optical properties remains a tough challenge. Man et al. tackled the three-dimensional case experimentally using a large photonic quasicrystal made of plastic. They find that the periodic structure yields surprisingly simple spectra, and the resulting structural insights confirm that quasicrystals are excellent candidates for photonic bandgap materials.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature03977", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7053", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "436"
      }
    ], 
    "keywords": [
      "propagation of light", 
      "photonic bandgap materials", 
      "exact theoretical calculations", 
      "photonic quasicrystals", 
      "photonic crystals", 
      "optical properties", 
      "photonic properties", 
      "two-dimensional quasicrystals", 
      "bandgap materials", 
      "theoretical calculations", 
      "experimental measurements", 
      "simple spectrum", 
      "quasicrystals", 
      "icosahedral quasicrystals", 
      "three-dimensional case", 
      "excellent candidate", 
      "structure yields", 
      "spectra", 
      "crystals", 
      "calculations", 
      "properties", 
      "light", 
      "measurements", 
      "propagation", 
      "previous work", 
      "structure", 
      "range", 
      "candidates", 
      "materials", 
      "applications", 
      "computation", 
      "yield", 
      "structural insights", 
      "dimensions", 
      "work", 
      "tough challenge", 
      "insights", 
      "cases", 
      "plastic", 
      "challenges"
    ], 
    "name": "Experimental measurement of the photonic properties of icosahedral quasicrystals", 
    "pagination": "993-996", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032001790"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature03977"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16107842"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature03977", 
      "https://app.dimensions.ai/details/publication/pub.1032001790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_397.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature03977"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03977'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03977'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03977'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03977'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      22 PREDICATES      68 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature03977 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N25ef3c94e739444996cded379c92d138
4 schema:citation sg:pub.10.1038/36514
5 schema:datePublished 2005-08
6 schema:datePublishedReg 2005-08-01
7 schema:description Quasicrystals for photonicsQuasicrystalline structures may have optical bandgap properties — frequency ranges in which the propagation of light is forbidden — that will make them well suited for applications in which photonic crystals are normally used. Previous work has focused on one- and two-dimensional quasicrystals for which exact theoretical calculations can be made. But when it comes to three dimensions, computation of the optical properties remains a tough challenge. Man et al. tackled the three-dimensional case experimentally using a large photonic quasicrystal made of plastic. They find that the periodic structure yields surprisingly simple spectra, and the resulting structural insights confirm that quasicrystals are excellent candidates for photonic bandgap materials.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ndf6e4f89246242228b897c80483d0017
12 Nf0422b949a1d4ab18fa210e514f4afe8
13 sg:journal.1018957
14 schema:keywords applications
15 bandgap materials
16 calculations
17 candidates
18 cases
19 challenges
20 computation
21 crystals
22 dimensions
23 exact theoretical calculations
24 excellent candidate
25 experimental measurements
26 icosahedral quasicrystals
27 insights
28 light
29 materials
30 measurements
31 optical properties
32 photonic bandgap materials
33 photonic crystals
34 photonic properties
35 photonic quasicrystals
36 plastic
37 previous work
38 propagation
39 propagation of light
40 properties
41 quasicrystals
42 range
43 simple spectrum
44 spectra
45 structural insights
46 structure
47 structure yields
48 theoretical calculations
49 three-dimensional case
50 tough challenge
51 two-dimensional quasicrystals
52 work
53 yield
54 schema:name Experimental measurement of the photonic properties of icosahedral quasicrystals
55 schema:pagination 993-996
56 schema:productId N095988a0aaac432c88f2620a31a7d294
57 N22a84aa06c9b40a3aa38e2591fd98468
58 Nf8c5b7fd6a5f405d878fff34398d32d2
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032001790
60 https://doi.org/10.1038/nature03977
61 schema:sdDatePublished 2022-05-20T07:23
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nc595101c3896490e8df704936ad5bd4d
64 schema:url https://doi.org/10.1038/nature03977
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N095988a0aaac432c88f2620a31a7d294 schema:name dimensions_id
69 schema:value pub.1032001790
70 rdf:type schema:PropertyValue
71 N0ce32e0960c243b689e495c3b5b9658f rdf:first sg:person.01107531552.94
72 rdf:rest Ne8421abfec66494aba95b97f3d7c8cd0
73 N22a84aa06c9b40a3aa38e2591fd98468 schema:name pubmed_id
74 schema:value 16107842
75 rdf:type schema:PropertyValue
76 N25ef3c94e739444996cded379c92d138 rdf:first sg:person.0725047135.28
77 rdf:rest N0ce32e0960c243b689e495c3b5b9658f
78 Nc595101c3896490e8df704936ad5bd4d schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ncbce92713e574f4a896aedd539005aa3 rdf:first sg:person.016355051605.83
81 rdf:rest rdf:nil
82 Ndf6e4f89246242228b897c80483d0017 schema:volumeNumber 436
83 rdf:type schema:PublicationVolume
84 Ne8421abfec66494aba95b97f3d7c8cd0 rdf:first sg:person.07440637376.85
85 rdf:rest Ncbce92713e574f4a896aedd539005aa3
86 Nf0422b949a1d4ab18fa210e514f4afe8 schema:issueNumber 7053
87 rdf:type schema:PublicationIssue
88 Nf8c5b7fd6a5f405d878fff34398d32d2 schema:name doi
89 schema:value 10.1038/nature03977
90 rdf:type schema:PropertyValue
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
95 schema:name Optical Physics
96 rdf:type schema:DefinedTerm
97 sg:journal.1018957 schema:issn 0028-0836
98 1476-4687
99 schema:name Nature
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.01107531552.94 schema:affiliation grid-institutes:grid.417284.c
103 schema:familyName Megens
104 schema:givenName Mischa
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107531552.94
106 rdf:type schema:Person
107 sg:person.016355051605.83 schema:affiliation grid-institutes:grid.137628.9
108 schema:familyName Chaikin
109 schema:givenName P. M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83
111 rdf:type schema:Person
112 sg:person.0725047135.28 schema:affiliation grid-institutes:grid.16750.35
113 schema:familyName Man
114 schema:givenName Weining
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725047135.28
116 rdf:type schema:Person
117 sg:person.07440637376.85 schema:affiliation grid-institutes:None
118 schema:familyName Steinhardt
119 schema:givenName Paul J.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440637376.85
121 rdf:type schema:Person
122 sg:pub.10.1038/36514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041378319
123 https://doi.org/10.1038/36514
124 rdf:type schema:CreativeWork
125 grid-institutes:None schema:alternateName Department of Physics
126 schema:name Department of Physics
127 rdf:type schema:Organization
128 grid-institutes:grid.137628.9 schema:alternateName Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA
129 schema:name Department of Physics
130 Department of Physics and Center for Soft Condensed Matter Research, New York University, 10003, New York, USA
131 Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA
132 rdf:type schema:Organization
133 grid-institutes:grid.16750.35 schema:alternateName Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA
134 schema:name Department of Physics
135 Princeton Institute for the Science and Technology of Materials, Princeton University, 08544, Princeton, New Jersey, USA
136 rdf:type schema:Organization
137 grid-institutes:grid.417284.c schema:alternateName Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands
138 schema:name Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA, Eindhoven, The Netherlands
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...