Uncovering the overlapping community structure of complex networks in nature and society View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-06

AUTHORS

Gergely Palla, Imre Derényi, Illés Farkas, Tamás Vicsek

ABSTRACT

Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins, industrial sectors and groups of people) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties. More... »

PAGES

814

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature03607

DOI

http://dx.doi.org/10.1038/nature03607

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032155732

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15944704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Community Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "E\u00f6tv\u00f6s Lor\u00e1nd University", 
          "id": "https://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "Biological Physics Research Group of the Hungarian Academy of Sciences, P\u00e1zm\u00e1ny P.\u2009stny.\u20091A, H-1117 Budapest, Hungary", 
            "Department of Biological Physics, E\u00f6tv\u00f6s University, P\u00e1zm\u00e1ny P.\u2009stny.\u20091A, H-1117 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palla", 
        "givenName": "Gergely", 
        "id": "sg:person.01224031676.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224031676.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "E\u00f6tv\u00f6s Lor\u00e1nd University", 
          "id": "https://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "Department of Biological Physics, E\u00f6tv\u00f6s University, P\u00e1zm\u00e1ny P.\u2009stny.\u20091A, H-1117 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Der\u00e9nyi", 
        "givenName": "Imre", 
        "id": "sg:person.01167750503.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167750503.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biological Physics Research Group of the Hungarian Academy of Sciences, P\u00e1zm\u00e1ny P.\u2009stny.\u20091A, H-1117 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farkas", 
        "givenName": "Ill\u00e9s", 
        "id": "sg:person.01165245747.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165245747.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "E\u00f6tv\u00f6s Lor\u00e1nd University", 
          "id": "https://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "Biological Physics Research Group of the Hungarian Academy of Sciences, P\u00e1zm\u00e1ny P.\u2009stny.\u20091A, H-1117 Budapest, Hungary", 
            "Department of Biological Physics, E\u00f6tv\u00f6s University, P\u00e1zm\u00e1ny P.\u2009stny.\u20091A, H-1117 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vicsek", 
        "givenName": "Tam\u00e1s", 
        "id": "sg:person.01370021645.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370021645.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/415141a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484556", 
          "https://doi.org/10.1038/415141a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415141a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484556", 
          "https://doi.org/10.1038/415141a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.160202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002306649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.160202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002306649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400054101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004043513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03195588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005812884", 
          "https://doi.org/10.3758/bf03195588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00124-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007257290", 
          "https://doi.org/10.1140/epjb/e2004-00124-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511811395.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017977188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0307852100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018194052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/418131a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019014434", 
          "https://doi.org/10.1038/418131a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/418131a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019014434", 
          "https://doi.org/10.1038/418131a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019781582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/07378830310479794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020293933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2032324100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026727582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.056110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027018685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.056110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027018685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033572453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033900087", 
          "https://doi.org/10.1038/nature03248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033900087", 
          "https://doi.org/10.1038/nature03248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31955-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034046772", 
          "https://doi.org/10.1007/978-3-540-31955-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/387067a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037338248", 
          "https://doi.org/10.1038/387067a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046132302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0038038588022001007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063688314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0038038588022001007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063688314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471670278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471670278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698655"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins, industrial sectors and groups of people) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature03607", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7043", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "435"
      }
    ], 
    "name": "Uncovering the overlapping community structure of complex networks in nature and society", 
    "pagination": "814", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "992ed56c2ed175bdccee49c22f7c275bf3d3fafb4e6600ab105ad48f0bf68bae"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15944704"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature03607"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032155732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature03607", 
      "https://app.dimensions.ai/details/publication/pub.1032155732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature03607"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03607'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03607'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03607'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03607'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      62 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature03607 schema:about N5ed06321c64848e49d66b8cb213a43d1
2 Nb031d09cb6e34ccb8586ab96b0239bb0
3 Nb8e20ced2f164667a17ffaa2e2cf5edb
4 Ncd76e603d7b84dc29391248d6a54bd0b
5 Nd327a3543a324d99ae27df68a21fa892
6 Nf2f5bb47967a4bd3816cb281b1a80e81
7 Nff3a39259e7d48dcbb4607968920c78b
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N1defb7c918bc40c09a7516d4698b114d
11 schema:citation sg:pub.10.1007/978-3-540-31955-9_6
12 sg:pub.10.1038/30918
13 sg:pub.10.1038/387067a0
14 sg:pub.10.1038/415141a
15 sg:pub.10.1038/418131a
16 sg:pub.10.1038/nature03248
17 sg:pub.10.1140/epjb/e2004-00124-y
18 sg:pub.10.3758/bf03195588
19 https://doi.org/10.1002/0471670278
20 https://doi.org/10.1017/cbo9780511811395.007
21 https://doi.org/10.1073/pnas.0307852100
22 https://doi.org/10.1073/pnas.0400054101
23 https://doi.org/10.1073/pnas.122653799
24 https://doi.org/10.1073/pnas.2032324100
25 https://doi.org/10.1093/bioinformatics/bth456
26 https://doi.org/10.1093/nar/28.1.289
27 https://doi.org/10.1103/physreve.68.056110
28 https://doi.org/10.1103/physreve.69.066133
29 https://doi.org/10.1103/physrevlett.76.3251
30 https://doi.org/10.1103/physrevlett.94.160202
31 https://doi.org/10.1103/revmodphys.74.47
32 https://doi.org/10.1108/07378830310479794
33 https://doi.org/10.1126/science.1070120
34 https://doi.org/10.1126/science.1073374
35 https://doi.org/10.1126/science.286.5439.509
36 https://doi.org/10.1177/0038038588022001007
37 schema:datePublished 2005-06
38 schema:datePublishedReg 2005-06-01
39 schema:description Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins, industrial sectors and groups of people) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N3f943da5b18048f094c1d0b03f9c7a74
44 N8b609ef1ab72457e89cf63e5112d45a6
45 sg:journal.1018957
46 schema:name Uncovering the overlapping community structure of complex networks in nature and society
47 schema:pagination 814
48 schema:productId N3aae3733aaa243e8bed250eb9cf3ae43
49 N4a661129beea46e09a9afa6744083c47
50 N8f4b41149797456d86838a07377f7a52
51 Nd887008b801c4444a6bd041fb314739b
52 Ne017c1ed82c744ecb64cb42478cb1eb6
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
54 https://doi.org/10.1038/nature03607
55 schema:sdDatePublished 2019-04-11T12:25
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N76ca15c96079407faa0857e93b1418cb
58 schema:url https://www.nature.com/articles/nature03607
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0b3f94dc48414ce6b29d1c27a51fcde6 rdf:first sg:person.01370021645.17
63 rdf:rest rdf:nil
64 N181866a4fb9f400bbf6f94d6deaca0f0 rdf:first sg:person.01165245747.67
65 rdf:rest N0b3f94dc48414ce6b29d1c27a51fcde6
66 N1defb7c918bc40c09a7516d4698b114d rdf:first sg:person.01224031676.37
67 rdf:rest N7ae39849417340d990459c36f1cd572b
68 N30b74c411b064743b82441ddd9264a78 schema:name Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary
69 rdf:type schema:Organization
70 N3aae3733aaa243e8bed250eb9cf3ae43 schema:name readcube_id
71 schema:value 992ed56c2ed175bdccee49c22f7c275bf3d3fafb4e6600ab105ad48f0bf68bae
72 rdf:type schema:PropertyValue
73 N3f943da5b18048f094c1d0b03f9c7a74 schema:volumeNumber 435
74 rdf:type schema:PublicationVolume
75 N4a661129beea46e09a9afa6744083c47 schema:name nlm_unique_id
76 schema:value 0410462
77 rdf:type schema:PropertyValue
78 N5ed06321c64848e49d66b8cb213a43d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Nature
80 rdf:type schema:DefinedTerm
81 N76ca15c96079407faa0857e93b1418cb schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N7ae39849417340d990459c36f1cd572b rdf:first sg:person.01167750503.30
84 rdf:rest N181866a4fb9f400bbf6f94d6deaca0f0
85 N8b609ef1ab72457e89cf63e5112d45a6 schema:issueNumber 7043
86 rdf:type schema:PublicationIssue
87 N8f4b41149797456d86838a07377f7a52 schema:name dimensions_id
88 schema:value pub.1032155732
89 rdf:type schema:PropertyValue
90 Nb031d09cb6e34ccb8586ab96b0239bb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Community Networks
92 rdf:type schema:DefinedTerm
93 Nb8e20ced2f164667a17ffaa2e2cf5edb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Internet
95 rdf:type schema:DefinedTerm
96 Ncd76e603d7b84dc29391248d6a54bd0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 Nd327a3543a324d99ae27df68a21fa892 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Saccharomyces cerevisiae
101 rdf:type schema:DefinedTerm
102 Nd887008b801c4444a6bd041fb314739b schema:name pubmed_id
103 schema:value 15944704
104 rdf:type schema:PropertyValue
105 Ne017c1ed82c744ecb64cb42478cb1eb6 schema:name doi
106 schema:value 10.1038/nature03607
107 rdf:type schema:PropertyValue
108 Nf2f5bb47967a4bd3816cb281b1a80e81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Models, Biological
110 rdf:type schema:DefinedTerm
111 Nff3a39259e7d48dcbb4607968920c78b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Protein Binding
113 rdf:type schema:DefinedTerm
114 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
115 schema:name Mathematical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
118 schema:name Statistics
119 rdf:type schema:DefinedTerm
120 sg:journal.1018957 schema:issn 0090-0028
121 1476-4687
122 schema:name Nature
123 rdf:type schema:Periodical
124 sg:person.01165245747.67 schema:affiliation N30b74c411b064743b82441ddd9264a78
125 schema:familyName Farkas
126 schema:givenName Illés
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165245747.67
128 rdf:type schema:Person
129 sg:person.01167750503.30 schema:affiliation https://www.grid.ac/institutes/grid.5591.8
130 schema:familyName Derényi
131 schema:givenName Imre
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167750503.30
133 rdf:type schema:Person
134 sg:person.01224031676.37 schema:affiliation https://www.grid.ac/institutes/grid.5591.8
135 schema:familyName Palla
136 schema:givenName Gergely
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224031676.37
138 rdf:type schema:Person
139 sg:person.01370021645.17 schema:affiliation https://www.grid.ac/institutes/grid.5591.8
140 schema:familyName Vicsek
141 schema:givenName Tamás
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370021645.17
143 rdf:type schema:Person
144 sg:pub.10.1007/978-3-540-31955-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034046772
145 https://doi.org/10.1007/978-3-540-31955-9_6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
148 https://doi.org/10.1038/30918
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/387067a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037338248
151 https://doi.org/10.1038/387067a0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/415141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484556
154 https://doi.org/10.1038/415141a
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/418131a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019014434
157 https://doi.org/10.1038/418131a
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature03248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033900087
160 https://doi.org/10.1038/nature03248
161 rdf:type schema:CreativeWork
162 sg:pub.10.1140/epjb/e2004-00124-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007257290
163 https://doi.org/10.1140/epjb/e2004-00124-y
164 rdf:type schema:CreativeWork
165 sg:pub.10.3758/bf03195588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005812884
166 https://doi.org/10.3758/bf03195588
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/0471670278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698655
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1017/cbo9780511811395.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017977188
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1073/pnas.0307852100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018194052
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1073/pnas.0400054101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004043513
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.2032324100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026727582
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/bioinformatics/bth456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046132302
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/nar/28.1.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033572453
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreve.68.056110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027018685
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreve.69.066133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039022482
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.76.3251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813049
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.94.160202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002306649
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1108/07378830310479794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020293933
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1070120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446369
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1177/0038038588022001007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063688314
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.5591.8 schema:alternateName Eötvös Loránd University
205 schema:name Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary
206 Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...