Micrometre-scale silicon electro-optic modulator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-05

AUTHORS

Qianfan Xu, Bradley Schmidt, Sameer Pradhan, Michal Lipson

ABSTRACT

Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures. More... »

PAGES

325

Journal

TITLE

Nature

ISSUE

7040

VOLUME

435

Author Affiliations

Related Patents

  • Ultrafast Ge/Si Resonator-Based Modulators For Optical Data Communications In Silicon Photonics
  • Balanced Bypass Circulators And Folded Universally-Balanced Interferometers
  • Low-Loss Bloch Wave Guiding In Open Structures And Highly Compact Efficient Waveguide-Crossing Arrays
  • Wide Free-Spectral-Range, Widely Tunable And Hitless-Switchable Optical Channel Add-Drop Filters
  • Device And Method For Modulating Transmission Of Terahertz Waves
  • Light Emitting Slot-Waveguide Device
  • Resonant Fourier Scanning
  • System And Method For A Micro Ring Laser
  • Electro-Optic Modulator Structures, Related Methods And Applications
  • Device And Method For Modulating Transmission Of Terahertz Waves
  • Fabrication-Tolerant Waveguides And Resonators
  • Medical Device Including Scanned Beam Unit With Operational Control Features
  • Optical Device Including Gate Insulating Layer Having Edge Effect
  • Optical Device Having Strained Buried Channel
  • Abrupt Metal-Insulator Transition Device With Parallel Mit Material Layers
  • Optical Waveguide Device With An Adiabatically-Varying Width
  • Electro-Optic Modulation
  • Low-Loss Bloch Wave Guiding In Open Structures And Highly Compact Efficient Waveguide-Crossing Arrays
  • High Speed Semiconductor Optical Modulator
  • Nanomechanical Photonic Devices
  • Ridge Waveguide
  • Method Of In Vivo Monitoring Using An Imaging System Including Scanned Beam Imaging Unit
  • Combined Sbi And Conventional Image Processor
  • Charge-Discharge Electro-Optical Microring Modulator
  • Lithographic And Measurement Techniques Using The Optical Properties Of Biaxial Crystals
  • Electro-Optic Device With Novel Insulating Structure And A Method For Manufacturing The Same
  • Scanned Beam Device And Method Using Same Which Measures The Reflectance Of Patient Tissue
  • Electrically Pumped Group Iv Semiconductor Micro-Ring Laser
  • Electro-Optic Modulator
  • Cavity Dynamics Compensation In Resonant Optical Modulators
  • Low-Voltage Differentially-Signaled Modulators
  • System And Method For A Micro Ring Laser
  • Enhancing The Sensitivity Of Resonant Optical Modulating And Switching Devices
  • Optical Isolation Created By Indirect Interband Photonic Transitions
  • Methods And Devices For Repairing Damaged Or Diseased Tissue Using A Scanning Beam Assembly
  • Method Of Manufacture Of A Pin Junction In The Edge, And Zones Doped Spaced, Application For The Manufacture Of Modulators Electro - Optic Silicon And Germanium Detectors Photo -
  • Silicon Photonic Heater-Modulator
  • Electro-Optical Waveguide Apparatuses And Methods Thereof
  • Electro-Optic Modulator Structures, Related Methods And Applications
  • Fabrication-Tolerant Waveguides And Resonators
  • Semiconductor Photonoic Nano Communication Link Method
  • Optical Device Including Gate Insulator With Modulated Thickness
  • Semiconductor Photonic Nano Communication Link Apparatus
  • Microphotonic Maskless Lithography
  • Resonant Optical Modulators
  • Wavelength-Tunable Optical Ring Resonators
  • Sbi Motion Artifact Removal Apparatus And Method
  • Optical Scanning Module And Means For Attaching The Module To Medical Instruments For Introducing The Module Into The Anatomy
  • Method For Creating A Pixel Image From Sampled Data Of A Scanned Beam Imager
  • Optical Resonator Tuning Using Piezoelectric Actuation
  • Semiconductor High-Speed Integrated Electro-Optic Devices And Methods
  • Method And Apparatus For Optically Outputting Information From A Semiconductor Device
  • Optical Device Having Modulator Employing Horizontal Electrical Field
  • Reduction Of Substrate Optical Leakage In Integrated Photonic Circuits Through Localized Substrate Removal
  • Apparatus And Method For Medically Treating A Tattoo
  • Power Modulation Of A Scanning Beam For Imaging, Therapy, And/Or Diagnosis
  • Scanning Beam Imaging With Adjustable Detector Sensitivity Or Gain
  • Micro-Electromechanical Device
  • Injection Modulator
  • Hybrid Silicon-On-Insulator Waveguide Devices
  • Controlling Optical Resonances Via Optically Induced Potentials
  • Electrooptic Silicon Modulator With Enhanced Bandwidth
  • Optical Device Having Modulator Employing Horizontal Electrical Field
  • Methods And Systems For Board Level Photonic Bridges
  • Method For Producing A Ridge-Shaped Pin Junction With Spaced-Apart Doped Regions, And Its Use In The Production Of Photodetectors And Electro-Optic Modulators
  • Systems And Methods For Controlling An Operating Wavelength
  • Position Tracking And Control For A Scanning Assembly
  • Wavelength-Tunable Optical Ring Resonators
  • Methods For Imaging The Anatomy With An Anatomically Secured Scanner Assembly
  • Methods And Devices For Photonic M-Ary Pulse Amplitude Modulation
  • Electro-Optical Modulator With Curving Resonator
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature03569

    DOI

    http://dx.doi.org/10.1038/nature03569

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032079641

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15902253


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "School of Electrical and Computer Engineering, Cornell University, 411 Phillips Hall, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Qianfan", 
            "id": "sg:person.0744632777.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744632777.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "School of Electrical and Computer Engineering, Cornell University, 411 Phillips Hall, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Bradley", 
            "id": "sg:person.01270334105.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270334105.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "School of Electrical and Computer Engineering, Cornell University, 411 Phillips Hall, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pradhan", 
            "givenName": "Sameer", 
            "id": "sg:person.01275150624.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275150624.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "School of Electrical and Computer Engineering, Cornell University, 411 Phillips Hall, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lipson", 
            "givenName": "Michal", 
            "id": "sg:person.01334071172.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334071172.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature02921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000932554", 
              "https://doi.org/10.1038/nature02921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opex.12.003713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009191755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opex.12.005269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015857674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opex.12.001622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017200170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opex.13.000519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026311798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-3467(01)00016-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036568353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.530160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036725879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039714002", 
              "https://doi.org/10.1038/nature02310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039714002", 
              "https://doi.org/10.1038/nature02310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044360200", 
              "https://doi.org/10.1038/nature03273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044360200", 
              "https://doi.org/10.1038/nature03273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:19950328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056781917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1630370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057727769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2944.902184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061146008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/50.754783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061183323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.662590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061210646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.849076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061211951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jlt.2003.808608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061282119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jlt.2003.818167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061282387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jqe.1987.1073206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061305545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jssc.1978.1051011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061326572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lpt.2004.826025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061366632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lpt.2005.846756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061367503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.571943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062181990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1147/rd.462.0245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063182645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.26.001888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065220067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.28.001302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065221125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.29.000769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065221710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opex.12.004437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065243142"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-05", 
        "datePublishedReg": "2005-05-01", 
        "description": "Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature03569", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7040", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "435"
          }
        ], 
        "name": "Micrometre-scale silicon electro-optic modulator", 
        "pagination": "325", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "98d22170311fac1f35ce98815f6bb885611bff41143368bd679d33af1cf166dc"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15902253"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature03569"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032079641"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature03569", 
          "https://app.dimensions.ai/details/publication/pub.1032079641"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature03569"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03569'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03569'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03569'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03569'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature03569 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author N95ec5eef11374badab80aaaab609fe55
    4 schema:citation sg:pub.10.1038/nature02310
    5 sg:pub.10.1038/nature02921
    6 sg:pub.10.1038/nature03273
    7 https://doi.org/10.1016/s0925-3467(01)00016-7
    8 https://doi.org/10.1049/el:19950328
    9 https://doi.org/10.1063/1.1630370
    10 https://doi.org/10.1109/2944.902184
    11 https://doi.org/10.1109/50.754783
    12 https://doi.org/10.1109/68.662590
    13 https://doi.org/10.1109/68.849076
    14 https://doi.org/10.1109/jlt.2003.808608
    15 https://doi.org/10.1109/jlt.2003.818167
    16 https://doi.org/10.1109/jqe.1987.1073206
    17 https://doi.org/10.1109/jssc.1978.1051011
    18 https://doi.org/10.1109/lpt.2004.826025
    19 https://doi.org/10.1109/lpt.2005.846756
    20 https://doi.org/10.1116/1.571943
    21 https://doi.org/10.1117/12.530160
    22 https://doi.org/10.1147/rd.462.0245
    23 https://doi.org/10.1364/ol.26.001888
    24 https://doi.org/10.1364/ol.28.001302
    25 https://doi.org/10.1364/ol.29.000769
    26 https://doi.org/10.1364/opex.12.001622
    27 https://doi.org/10.1364/opex.12.003713
    28 https://doi.org/10.1364/opex.12.004437
    29 https://doi.org/10.1364/opex.12.005269
    30 https://doi.org/10.1364/opex.13.000519
    31 schema:datePublished 2005-05
    32 schema:datePublishedReg 2005-05-01
    33 schema:description Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N460000ab0e094ccb92fca87e6bdfdee7
    38 N5f797f40b3e5448686d8ddab2d327fdc
    39 sg:journal.1018957
    40 schema:name Micrometre-scale silicon electro-optic modulator
    41 schema:pagination 325
    42 schema:productId N18753c509d6643e886b5e96480e53607
    43 N194423378e9f45eb94a13b4d4fa5bb49
    44 N29f52e6f7137476c914d7ddc40257ce7
    45 N469a08eaa0884b6c83e1e6c1eebee2fe
    46 Na82fbf23e0134c98b168ee4d6a520e1e
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032079641
    48 https://doi.org/10.1038/nature03569
    49 schema:sdDatePublished 2019-04-11T12:27
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N4582ad245aa04f1587e471dcdd3f4f66
    52 schema:url https://www.nature.com/articles/nature03569
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N18753c509d6643e886b5e96480e53607 schema:name dimensions_id
    57 schema:value pub.1032079641
    58 rdf:type schema:PropertyValue
    59 N194423378e9f45eb94a13b4d4fa5bb49 schema:name nlm_unique_id
    60 schema:value 0410462
    61 rdf:type schema:PropertyValue
    62 N29f52e6f7137476c914d7ddc40257ce7 schema:name doi
    63 schema:value 10.1038/nature03569
    64 rdf:type schema:PropertyValue
    65 N4582ad245aa04f1587e471dcdd3f4f66 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N460000ab0e094ccb92fca87e6bdfdee7 schema:volumeNumber 435
    68 rdf:type schema:PublicationVolume
    69 N469a08eaa0884b6c83e1e6c1eebee2fe schema:name readcube_id
    70 schema:value 98d22170311fac1f35ce98815f6bb885611bff41143368bd679d33af1cf166dc
    71 rdf:type schema:PropertyValue
    72 N5f797f40b3e5448686d8ddab2d327fdc schema:issueNumber 7040
    73 rdf:type schema:PublicationIssue
    74 N95ec5eef11374badab80aaaab609fe55 rdf:first sg:person.0744632777.16
    75 rdf:rest Nad0c8b219bef404fa62b66dc8380e687
    76 Na617be533fed40f5964803a5f476e667 rdf:first sg:person.01334071172.02
    77 rdf:rest rdf:nil
    78 Na82fbf23e0134c98b168ee4d6a520e1e schema:name pubmed_id
    79 schema:value 15902253
    80 rdf:type schema:PropertyValue
    81 Nad0c8b219bef404fa62b66dc8380e687 rdf:first sg:person.01270334105.48
    82 rdf:rest Ne4ec5b59cf214c8ebd9957667c8f73d3
    83 Ne4ec5b59cf214c8ebd9957667c8f73d3 rdf:first sg:person.01275150624.72
    84 rdf:rest Na617be533fed40f5964803a5f476e667
    85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Physical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Optical Physics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1018957 schema:issn 0090-0028
    92 1476-4687
    93 schema:name Nature
    94 rdf:type schema:Periodical
    95 sg:person.01270334105.48 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    96 schema:familyName Schmidt
    97 schema:givenName Bradley
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270334105.48
    99 rdf:type schema:Person
    100 sg:person.01275150624.72 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    101 schema:familyName Pradhan
    102 schema:givenName Sameer
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275150624.72
    104 rdf:type schema:Person
    105 sg:person.01334071172.02 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    106 schema:familyName Lipson
    107 schema:givenName Michal
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334071172.02
    109 rdf:type schema:Person
    110 sg:person.0744632777.16 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    111 schema:familyName Xu
    112 schema:givenName Qianfan
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744632777.16
    114 rdf:type schema:Person
    115 sg:pub.10.1038/nature02310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039714002
    116 https://doi.org/10.1038/nature02310
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1038/nature02921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000932554
    119 https://doi.org/10.1038/nature02921
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/nature03273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044360200
    122 https://doi.org/10.1038/nature03273
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0925-3467(01)00016-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036568353
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1049/el:19950328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056781917
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1063/1.1630370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057727769
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/2944.902184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146008
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/50.754783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061183323
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/68.662590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061210646
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/68.849076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061211951
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/jlt.2003.808608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061282119
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/jlt.2003.818167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061282387
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/jqe.1987.1073206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305545
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/jssc.1978.1051011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061326572
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/lpt.2004.826025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061366632
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/lpt.2005.846756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061367503
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1116/1.571943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062181990
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1117/12.530160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036725879
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1147/rd.462.0245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182645
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1364/ol.26.001888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220067
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1364/ol.28.001302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221125
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1364/ol.29.000769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221710
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1364/opex.12.001622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017200170
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1364/opex.12.003713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009191755
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1364/opex.12.004437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065243142
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1364/opex.12.005269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015857674
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1364/opex.13.000519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026311798
    171 rdf:type schema:CreativeWork
    172 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    173 schema:name School of Electrical and Computer Engineering, Cornell University, 411 Phillips Hall, Ithaca, New York 14853, USA
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...