State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-02

AUTHORS

Stéphane Bellafiore, Frédy Barneche, Gilles Peltier, Jean-David Rochaix

ABSTRACT

Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI)1,2. Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase4,5; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis6. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes. More... »

PAGES

892-895

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature03286

DOI

http://dx.doi.org/10.1038/nature03286

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003770695

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15729347


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem II Protein Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plastoquinone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Kinases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Serine-Threonine Kinases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thylakoids", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellafiore", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0641612273.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641612273.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barneche", 
        "givenName": "Fr\u00e9dy", 
        "id": "sg:person.01274046170.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274046170.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynth\u00e8se, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France", 
          "id": "http://www.grid.ac/institutes/grid.457335.3", 
          "name": [
            "CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynth\u00e8se, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peltier", 
        "givenName": "Gilles", 
        "id": "sg:person.01132010763.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132010763.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rochaix", 
        "givenName": "Jean-David", 
        "id": "sg:person.01362441035.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362441035.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/291025a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022277827", 
          "https://doi.org/10.1038/291025a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003014035", 
          "https://doi.org/10.1038/17624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35046121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002551819", 
          "https://doi.org/10.1038/35046121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00029047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040135357", 
          "https://doi.org/10.1007/bf00029047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/269344a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002689737", 
          "https://doi.org/10.1038/269344a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-02", 
    "datePublishedReg": "2005-02-01", 
    "description": "Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI)1,2. Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase4,5; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis6. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature03286", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7028", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "433"
      }
    ], 
    "keywords": [
      "photosystem II", 
      "plastoquinone pool", 
      "phosphorylation of LHCII", 
      "major antenna complex", 
      "light conditions", 
      "light excitation energy", 
      "mutant plants", 
      "LHCII phosphorylation", 
      "photosynthetic organisms", 
      "STN7", 
      "photosystem I", 
      "antenna complexes", 
      "environmental changes", 
      "LHCII", 
      "reversible association", 
      "phosphorylation", 
      "excess stimulation", 
      "pool", 
      "state transitions", 
      "light adaptation", 
      "Stt7", 
      "orthologues", 
      "important role", 
      "photosystems", 
      "organisms", 
      "plants", 
      "psi", 
      "activation", 
      "complexes", 
      "adaptation", 
      "stimulation", 
      "growth", 
      "role", 
      "response", 
      "process", 
      "transition", 
      "loss", 
      "conditions", 
      "redistribution", 
      "changes", 
      "association", 
      "oxidation", 
      "reverses", 
      "capacity", 
      "reduction", 
      "light absorption capacity", 
      "excitation energy", 
      "absorption capacity", 
      "energy", 
      "displacement"
    ], 
    "name": "State transitions and light adaptation require chloroplast thylakoid protein kinase STN7", 
    "pagination": "892-895", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003770695"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature03286"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15729347"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature03286", 
      "https://app.dimensions.ai/details/publication/pub.1003770695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_405.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature03286"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03286'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03286'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03286'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03286'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      93 URIs      80 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature03286 schema:about N02bdc88a06694a0ca3973070cf6b559e
2 N35f5304ff6654b68bdce4822bdc91f4f
3 N565791fb015548bb8de81cf38f8a360d
4 N65486567f7ba497c8dcf0d957a6efe9e
5 N6ce45edc67bf43d7a1b3ba96a084e63a
6 N821c1540628b48ef8a4fbb60b527ec55
7 N93e392bea10847afac8a89ad03ce1de9
8 Nac492fabad2843dabde44912b9e2e3b2
9 Nc01174d68f23472ca15e0538f53f385e
10 Nc78417c1469242efbe4ab5c10f847f8e
11 Ncc9122eae047411d8b1f80e738b2d290
12 Ne859f9260d124d538378803db920d4cd
13 anzsrc-for:06
14 anzsrc-for:0601
15 schema:author N4238d6f00e374cf9bdc3f932d818cc40
16 schema:citation sg:pub.10.1007/bf00029047
17 sg:pub.10.1038/17624
18 sg:pub.10.1038/269344a0
19 sg:pub.10.1038/291025a0
20 sg:pub.10.1038/35046121
21 schema:datePublished 2005-02
22 schema:datePublishedReg 2005-02-01
23 schema:description Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI)1,2. Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase4,5; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis6. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N0a6cb7d387a5477aa1dce376fa0d17e3
27 Nee8e6ef9c27e4074bc883c91ed6ba6ea
28 sg:journal.1018957
29 schema:keywords LHCII
30 LHCII phosphorylation
31 STN7
32 Stt7
33 absorption capacity
34 activation
35 adaptation
36 antenna complexes
37 association
38 capacity
39 changes
40 complexes
41 conditions
42 displacement
43 energy
44 environmental changes
45 excess stimulation
46 excitation energy
47 growth
48 important role
49 light absorption capacity
50 light adaptation
51 light conditions
52 light excitation energy
53 loss
54 major antenna complex
55 mutant plants
56 organisms
57 orthologues
58 oxidation
59 phosphorylation
60 phosphorylation of LHCII
61 photosynthetic organisms
62 photosystem I
63 photosystem II
64 photosystems
65 plants
66 plastoquinone pool
67 pool
68 process
69 psi
70 redistribution
71 reduction
72 response
73 reverses
74 reversible association
75 role
76 state transitions
77 stimulation
78 transition
79 schema:name State transitions and light adaptation require chloroplast thylakoid protein kinase STN7
80 schema:pagination 892-895
81 schema:productId N610871574fdf4165959ac9c4bd25b88d
82 Ne19abd8650e549899c0bcbe908762ab7
83 Nf3ee1bab95ff45afbe82c6ca2e9a37af
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003770695
85 https://doi.org/10.1038/nature03286
86 schema:sdDatePublished 2022-08-04T16:56
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nd041bde824534e169299eecd4b28593b
89 schema:url https://doi.org/10.1038/nature03286
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N02bdc88a06694a0ca3973070cf6b559e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Protein Kinases
95 rdf:type schema:DefinedTerm
96 N0a6cb7d387a5477aa1dce376fa0d17e3 schema:issueNumber 7028
97 rdf:type schema:PublicationIssue
98 N33a3f5e4d9014b7da904479195a09728 rdf:first sg:person.01132010763.26
99 rdf:rest Ne42a8281f8134d219b2f0485bbb1c734
100 N35f5304ff6654b68bdce4822bdc91f4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Plastoquinone
102 rdf:type schema:DefinedTerm
103 N4238d6f00e374cf9bdc3f932d818cc40 rdf:first sg:person.0641612273.08
104 rdf:rest Nce3f6f74df0342d28619ef17a9d91219
105 N565791fb015548bb8de81cf38f8a360d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Photosystem II Protein Complex
107 rdf:type schema:DefinedTerm
108 N610871574fdf4165959ac9c4bd25b88d schema:name dimensions_id
109 schema:value pub.1003770695
110 rdf:type schema:PropertyValue
111 N65486567f7ba497c8dcf0d957a6efe9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Photosynthesis
113 rdf:type schema:DefinedTerm
114 N6ce45edc67bf43d7a1b3ba96a084e63a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Thylakoids
116 rdf:type schema:DefinedTerm
117 N821c1540628b48ef8a4fbb60b527ec55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Arabidopsis Proteins
119 rdf:type schema:DefinedTerm
120 N93e392bea10847afac8a89ad03ce1de9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Protein Serine-Threonine Kinases
122 rdf:type schema:DefinedTerm
123 Nac492fabad2843dabde44912b9e2e3b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Mutation
125 rdf:type schema:DefinedTerm
126 Nc01174d68f23472ca15e0538f53f385e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Arabidopsis
128 rdf:type schema:DefinedTerm
129 Nc78417c1469242efbe4ab5c10f847f8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Phosphorylation
131 rdf:type schema:DefinedTerm
132 Ncc9122eae047411d8b1f80e738b2d290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Light
134 rdf:type schema:DefinedTerm
135 Nce3f6f74df0342d28619ef17a9d91219 rdf:first sg:person.01274046170.36
136 rdf:rest N33a3f5e4d9014b7da904479195a09728
137 Nd041bde824534e169299eecd4b28593b schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Ne19abd8650e549899c0bcbe908762ab7 schema:name doi
140 schema:value 10.1038/nature03286
141 rdf:type schema:PropertyValue
142 Ne42a8281f8134d219b2f0485bbb1c734 rdf:first sg:person.01362441035.51
143 rdf:rest rdf:nil
144 Ne859f9260d124d538378803db920d4cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Adaptation, Physiological
146 rdf:type schema:DefinedTerm
147 Nee8e6ef9c27e4074bc883c91ed6ba6ea schema:volumeNumber 433
148 rdf:type schema:PublicationVolume
149 Nf3ee1bab95ff45afbe82c6ca2e9a37af schema:name pubmed_id
150 schema:value 15729347
151 rdf:type schema:PropertyValue
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biochemistry and Cell Biology
157 rdf:type schema:DefinedTerm
158 sg:journal.1018957 schema:issn 0028-0836
159 1476-4687
160 schema:name Nature
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.01132010763.26 schema:affiliation grid-institutes:grid.457335.3
164 schema:familyName Peltier
165 schema:givenName Gilles
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132010763.26
167 rdf:type schema:Person
168 sg:person.01274046170.36 schema:affiliation grid-institutes:grid.8591.5
169 schema:familyName Barneche
170 schema:givenName Frédy
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274046170.36
172 rdf:type schema:Person
173 sg:person.01362441035.51 schema:affiliation grid-institutes:grid.8591.5
174 schema:familyName Rochaix
175 schema:givenName Jean-David
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362441035.51
177 rdf:type schema:Person
178 sg:person.0641612273.08 schema:affiliation grid-institutes:grid.8591.5
179 schema:familyName Bellafiore
180 schema:givenName Stéphane
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641612273.08
182 rdf:type schema:Person
183 sg:pub.10.1007/bf00029047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040135357
184 https://doi.org/10.1007/bf00029047
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/17624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003014035
187 https://doi.org/10.1038/17624
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/269344a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002689737
190 https://doi.org/10.1038/269344a0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/291025a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022277827
193 https://doi.org/10.1038/291025a0
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/35046121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002551819
196 https://doi.org/10.1038/35046121
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.457335.3 schema:alternateName CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France
199 schema:name CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France
200 rdf:type schema:Organization
201 grid-institutes:grid.8591.5 schema:alternateName Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland
202 schema:name Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...