State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-02

AUTHORS

Stéphane Bellafiore, Frédy Barneche, Gilles Peltier, Jean-David Rochaix

ABSTRACT

Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI)1,2. Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase4,5; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis6. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes. More... »

PAGES

892-895

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature03286

DOI

http://dx.doi.org/10.1038/nature03286

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003770695

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15729347


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem II Protein Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plastoquinone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Kinases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Serine-Threonine Kinases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thylakoids", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellafiore", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0641612273.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641612273.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barneche", 
        "givenName": "Fr\u00e9dy", 
        "id": "sg:person.01274046170.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274046170.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynth\u00e8se, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France", 
          "id": "http://www.grid.ac/institutes/grid.457335.3", 
          "name": [
            "CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynth\u00e8se, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peltier", 
        "givenName": "Gilles", 
        "id": "sg:person.01132010763.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132010763.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rochaix", 
        "givenName": "Jean-David", 
        "id": "sg:person.01362441035.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362441035.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/291025a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022277827", 
          "https://doi.org/10.1038/291025a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003014035", 
          "https://doi.org/10.1038/17624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35046121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002551819", 
          "https://doi.org/10.1038/35046121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00029047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040135357", 
          "https://doi.org/10.1007/bf00029047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/269344a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002689737", 
          "https://doi.org/10.1038/269344a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-02", 
    "datePublishedReg": "2005-02-01", 
    "description": "Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI)1,2. Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase4,5; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis6. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature03286", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7028", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "433"
      }
    ], 
    "keywords": [
      "photosystem II", 
      "plastoquinone pool", 
      "phosphorylation of LHCII", 
      "major antenna complex", 
      "light conditions", 
      "light excitation energy", 
      "mutant plants", 
      "LHCII phosphorylation", 
      "photosynthetic organisms", 
      "STN7", 
      "photosystem I", 
      "antenna complexes", 
      "environmental changes", 
      "LHCII", 
      "reversible association", 
      "phosphorylation", 
      "excess stimulation", 
      "pool", 
      "state transitions", 
      "light adaptation", 
      "Stt7", 
      "orthologues", 
      "important role", 
      "photosystems", 
      "organisms", 
      "plants", 
      "psi", 
      "activation", 
      "complexes", 
      "adaptation", 
      "stimulation", 
      "growth", 
      "role", 
      "response", 
      "process", 
      "transition", 
      "loss", 
      "conditions", 
      "redistribution", 
      "changes", 
      "association", 
      "oxidation", 
      "reverses", 
      "capacity", 
      "reduction", 
      "light absorption capacity", 
      "excitation energy", 
      "absorption capacity", 
      "energy", 
      "displacement"
    ], 
    "name": "State transitions and light adaptation require chloroplast thylakoid protein kinase STN7", 
    "pagination": "892-895", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003770695"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature03286"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15729347"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature03286", 
      "https://app.dimensions.ai/details/publication/pub.1003770695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_405.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature03286"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03286'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03286'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03286'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03286'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      93 URIs      80 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature03286 schema:about N0862e0e3869c4895beb8bdbd0ff60c2f
2 N4c6a0cdc874e422797b481c805c34381
3 N503f2a832b8143319cae9618b10cc540
4 N74d0e592598b4dcbb3f74f276c900c0b
5 N7db636390acf4939b87811ffa952ba6a
6 N8cd691376e844663a922807432ea325d
7 Nac7c8d788d7448a8b20b86f73a6e6848
8 Nb63ac45913a242ec9e467b44a5272983
9 Nd2a7574847854167a2c1d8fd421ae631
10 Nd860859e9ada46ce8af1e183a6e04c63
11 Nd8eabcb2f7074db28bf596422914e139
12 Ne5fa7f4c3aeb4a8f9fdc57d93ba435d5
13 anzsrc-for:06
14 anzsrc-for:0601
15 schema:author Nafe953e8b22b4f979503b3099dd530c5
16 schema:citation sg:pub.10.1007/bf00029047
17 sg:pub.10.1038/17624
18 sg:pub.10.1038/269344a0
19 sg:pub.10.1038/291025a0
20 sg:pub.10.1038/35046121
21 schema:datePublished 2005-02
22 schema:datePublishedReg 2005-02-01
23 schema:description Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI)1,2. Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase4,5; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis6. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N2942237e3e824322929bbb52aa9689d6
27 Nef874e4ffae74083a662a1358bfa217b
28 sg:journal.1018957
29 schema:keywords LHCII
30 LHCII phosphorylation
31 STN7
32 Stt7
33 absorption capacity
34 activation
35 adaptation
36 antenna complexes
37 association
38 capacity
39 changes
40 complexes
41 conditions
42 displacement
43 energy
44 environmental changes
45 excess stimulation
46 excitation energy
47 growth
48 important role
49 light absorption capacity
50 light adaptation
51 light conditions
52 light excitation energy
53 loss
54 major antenna complex
55 mutant plants
56 organisms
57 orthologues
58 oxidation
59 phosphorylation
60 phosphorylation of LHCII
61 photosynthetic organisms
62 photosystem I
63 photosystem II
64 photosystems
65 plants
66 plastoquinone pool
67 pool
68 process
69 psi
70 redistribution
71 reduction
72 response
73 reverses
74 reversible association
75 role
76 state transitions
77 stimulation
78 transition
79 schema:name State transitions and light adaptation require chloroplast thylakoid protein kinase STN7
80 schema:pagination 892-895
81 schema:productId N14284aad36d148b989f9abb3604858af
82 N45ea4519cde74606a628cf200a4b4a88
83 Ne10f1453ba2f4f2b934b37963073f557
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003770695
85 https://doi.org/10.1038/nature03286
86 schema:sdDatePublished 2022-08-04T16:56
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Ne69c766fd43d4642936ff96117b6bcc5
89 schema:url https://doi.org/10.1038/nature03286
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N03039fe03ecb4455b60862b039e7c72b rdf:first sg:person.01362441035.51
94 rdf:rest rdf:nil
95 N0862e0e3869c4895beb8bdbd0ff60c2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Phosphorylation
97 rdf:type schema:DefinedTerm
98 N14284aad36d148b989f9abb3604858af schema:name doi
99 schema:value 10.1038/nature03286
100 rdf:type schema:PropertyValue
101 N2942237e3e824322929bbb52aa9689d6 schema:issueNumber 7028
102 rdf:type schema:PublicationIssue
103 N45ea4519cde74606a628cf200a4b4a88 schema:name pubmed_id
104 schema:value 15729347
105 rdf:type schema:PropertyValue
106 N4c6a0cdc874e422797b481c805c34381 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Light
108 rdf:type schema:DefinedTerm
109 N503f2a832b8143319cae9618b10cc540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Protein Kinases
111 rdf:type schema:DefinedTerm
112 N5eb1e79e92c7438b96512311d44c389a rdf:first sg:person.01274046170.36
113 rdf:rest Nfee21b3d08f04067863d8b20abcae114
114 N74d0e592598b4dcbb3f74f276c900c0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Arabidopsis Proteins
116 rdf:type schema:DefinedTerm
117 N7db636390acf4939b87811ffa952ba6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Thylakoids
119 rdf:type schema:DefinedTerm
120 N8cd691376e844663a922807432ea325d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Photosystem II Protein Complex
122 rdf:type schema:DefinedTerm
123 Nac7c8d788d7448a8b20b86f73a6e6848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Mutation
125 rdf:type schema:DefinedTerm
126 Nafe953e8b22b4f979503b3099dd530c5 rdf:first sg:person.0641612273.08
127 rdf:rest N5eb1e79e92c7438b96512311d44c389a
128 Nb63ac45913a242ec9e467b44a5272983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Protein Serine-Threonine Kinases
130 rdf:type schema:DefinedTerm
131 Nd2a7574847854167a2c1d8fd421ae631 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Photosynthesis
133 rdf:type schema:DefinedTerm
134 Nd860859e9ada46ce8af1e183a6e04c63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Adaptation, Physiological
136 rdf:type schema:DefinedTerm
137 Nd8eabcb2f7074db28bf596422914e139 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Plastoquinone
139 rdf:type schema:DefinedTerm
140 Ne10f1453ba2f4f2b934b37963073f557 schema:name dimensions_id
141 schema:value pub.1003770695
142 rdf:type schema:PropertyValue
143 Ne5fa7f4c3aeb4a8f9fdc57d93ba435d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Arabidopsis
145 rdf:type schema:DefinedTerm
146 Ne69c766fd43d4642936ff96117b6bcc5 schema:name Springer Nature - SN SciGraph project
147 rdf:type schema:Organization
148 Nef874e4ffae74083a662a1358bfa217b schema:volumeNumber 433
149 rdf:type schema:PublicationVolume
150 Nfee21b3d08f04067863d8b20abcae114 rdf:first sg:person.01132010763.26
151 rdf:rest N03039fe03ecb4455b60862b039e7c72b
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biochemistry and Cell Biology
157 rdf:type schema:DefinedTerm
158 sg:journal.1018957 schema:issn 0028-0836
159 1476-4687
160 schema:name Nature
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.01132010763.26 schema:affiliation grid-institutes:grid.457335.3
164 schema:familyName Peltier
165 schema:givenName Gilles
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132010763.26
167 rdf:type schema:Person
168 sg:person.01274046170.36 schema:affiliation grid-institutes:grid.8591.5
169 schema:familyName Barneche
170 schema:givenName Frédy
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274046170.36
172 rdf:type schema:Person
173 sg:person.01362441035.51 schema:affiliation grid-institutes:grid.8591.5
174 schema:familyName Rochaix
175 schema:givenName Jean-David
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362441035.51
177 rdf:type schema:Person
178 sg:person.0641612273.08 schema:affiliation grid-institutes:grid.8591.5
179 schema:familyName Bellafiore
180 schema:givenName Stéphane
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641612273.08
182 rdf:type schema:Person
183 sg:pub.10.1007/bf00029047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040135357
184 https://doi.org/10.1007/bf00029047
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/17624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003014035
187 https://doi.org/10.1038/17624
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/269344a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002689737
190 https://doi.org/10.1038/269344a0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/291025a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022277827
193 https://doi.org/10.1038/291025a0
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/35046121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002551819
196 https://doi.org/10.1038/35046121
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.457335.3 schema:alternateName CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France
199 schema:name CEA Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 6191 CNRS-CEA, Aix Marseille II, F-3108, Saint-Paul-Durance, France
200 rdf:type schema:Organization
201 grid-institutes:grid.8591.5 schema:alternateName Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland
202 schema:name Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211, Geneva, Switzerland
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...