Self-similarity of complex networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-01

AUTHORS

Chaoming Song, Shlomo Havlin, Hernán A. Makse

ABSTRACT

Complex networks have been studied extensively owing to their relevance to many real systems such as the world-wide web, the Internet, energy landscapes and biological and social networks. A large number of real networks are referred to as 'scale-free' because they show a power-law distribution of the number of links per node. However, it is widely believed that complex networks are not invariant or self-similar under a length-scale transformation. This conclusion originates from the 'small-world' property of these networks, which implies that the number of nodes increases exponentially with the 'diameter' of the network, rather than the power-law relation expected for a self-similar structure. Here we analyse a variety of real complex networks and find that, on the contrary, they consist of self-repeating patterns on all length scales. This result is achieved by the application of a renormalization procedure that coarse-grains the system into boxes containing nodes within a given 'size'. We identify a power-law relation between the number of boxes needed to cover the network and the size of the box, defining a finite self-similar exponent. These fundamental properties help to explain the scale-free nature of complex networks and suggest a common self-organization dynamics. More... »

PAGES

392

References to SciGraph publications

  • 2004-03. Complex networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 1988. Fractals in NONE
  • 1999-09. Internet: Diameter of the World-Wide Web in NATURE
  • 2000-10. The large-scale organization of metabolic networks in NATURE
  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • 1996. Fractals and Disordered Systems in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature03248

    DOI

    http://dx.doi.org/10.1038/nature03248

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033900087

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15674285


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "City College of New York", 
              "id": "https://www.grid.ac/institutes/grid.254250.4", 
              "name": [
                "Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Chaoming", 
            "id": "sg:person.01341467407.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341467407.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bar-Ilan University", 
              "id": "https://www.grid.ac/institutes/grid.22098.31", 
              "name": [
                "Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Havlin", 
            "givenName": "Shlomo", 
            "id": "sg:person.0671611704.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671611704.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City College of New York", 
              "id": "https://www.grid.ac/institutes/grid.254250.4", 
              "name": [
                "Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makse", 
            "givenName": "Hern\u00e1n A.", 
            "id": "sg:person.01050020710.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050020710.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/nar/28.1.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007406550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009550067", 
              "https://doi.org/10.1038/43601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009550067", 
              "https://doi.org/10.1038/43601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5439.509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010080128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730110112519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019965146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-84868-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027887038", 
              "https://doi.org/10.1007/978-3-642-84868-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-84868-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027887038", 
              "https://doi.org/10.1007/978-3-642-84868-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00110-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032650139", 
              "https://doi.org/10.1140/epjb/e2004-00110-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033572453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-2124-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043447712", 
              "https://doi.org/10.1007/978-1-4899-2124-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-2124-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043447712", 
              "https://doi.org/10.1007/978-1-4899-2124-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510804", 
              "https://doi.org/10.1038/35036627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510804", 
              "https://doi.org/10.1038/35036627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s003614450342480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s003614450342480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/316194.316229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063167710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511610905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098666412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780198515906.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098793632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/1407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098907782"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-01", 
        "datePublishedReg": "2005-01-01", 
        "description": "Complex networks have been studied extensively owing to their relevance to many real systems such as the world-wide web, the Internet, energy landscapes and biological and social networks. A large number of real networks are referred to as 'scale-free' because they show a power-law distribution of the number of links per node. However, it is widely believed that complex networks are not invariant or self-similar under a length-scale transformation. This conclusion originates from the 'small-world' property of these networks, which implies that the number of nodes increases exponentially with the 'diameter' of the network, rather than the power-law relation expected for a self-similar structure. Here we analyse a variety of real complex networks and find that, on the contrary, they consist of self-repeating patterns on all length scales. This result is achieved by the application of a renormalization procedure that coarse-grains the system into boxes containing nodes within a given 'size'. We identify a power-law relation between the number of boxes needed to cover the network and the size of the box, defining a finite self-similar exponent. These fundamental properties help to explain the scale-free nature of complex networks and suggest a common self-organization dynamics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature03248", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7024", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "433"
          }
        ], 
        "name": "Self-similarity of complex networks", 
        "pagination": "392", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a17dc2afa2120779de3d6fd0f196f7def0356af20721e2bd6b0a74d26b833c33"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15674285"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature03248"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033900087"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature03248", 
          "https://app.dimensions.ai/details/publication/pub.1033900087"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature03248"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03248'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03248'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03248'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03248'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature03248 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nf2c7322a21924056a8e5b1bab7d9a07b
    4 schema:citation sg:pub.10.1007/978-1-4899-2124-6
    5 sg:pub.10.1007/978-3-642-84868-1
    6 sg:pub.10.1038/30918
    7 sg:pub.10.1038/35036627
    8 sg:pub.10.1038/43601
    9 sg:pub.10.1140/epjb/e2004-00110-5
    10 https://doi.org/10.1017/cbo9780511610905
    11 https://doi.org/10.1080/00018730110112519
    12 https://doi.org/10.1093/acprof:oso/9780198515906.001.0001
    13 https://doi.org/10.1093/nar/28.1.123
    14 https://doi.org/10.1093/nar/28.1.289
    15 https://doi.org/10.1103/revmodphys.74.47
    16 https://doi.org/10.1126/science.286.5439.509
    17 https://doi.org/10.1137/s003614450342480
    18 https://doi.org/10.1142/1407
    19 https://doi.org/10.1145/316194.316229
    20 schema:datePublished 2005-01
    21 schema:datePublishedReg 2005-01-01
    22 schema:description Complex networks have been studied extensively owing to their relevance to many real systems such as the world-wide web, the Internet, energy landscapes and biological and social networks. A large number of real networks are referred to as 'scale-free' because they show a power-law distribution of the number of links per node. However, it is widely believed that complex networks are not invariant or self-similar under a length-scale transformation. This conclusion originates from the 'small-world' property of these networks, which implies that the number of nodes increases exponentially with the 'diameter' of the network, rather than the power-law relation expected for a self-similar structure. Here we analyse a variety of real complex networks and find that, on the contrary, they consist of self-repeating patterns on all length scales. This result is achieved by the application of a renormalization procedure that coarse-grains the system into boxes containing nodes within a given 'size'. We identify a power-law relation between the number of boxes needed to cover the network and the size of the box, defining a finite self-similar exponent. These fundamental properties help to explain the scale-free nature of complex networks and suggest a common self-organization dynamics.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N53a9aa75ed22481fac05d917117fe351
    27 Na76161160440481eaaf51fe981f65d41
    28 sg:journal.1018957
    29 schema:name Self-similarity of complex networks
    30 schema:pagination 392
    31 schema:productId N2beb9ba858c2455c88ddc49fe1162aa5
    32 Nba1af07d9ca74fa68df88fd7aefcb034
    33 Nddfec0ce95d142ae9434ab55d3372a71
    34 Nde52d1e7b731427798b61ea468333c1d
    35 Nec964c7d49324ba6b6e7a7d95fd09b5e
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033900087
    37 https://doi.org/10.1038/nature03248
    38 schema:sdDatePublished 2019-04-11T12:23
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nedae6e6cf0ca458c8ce2b66c1aa302e3
    41 schema:url https://www.nature.com/articles/nature03248
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N2beb9ba858c2455c88ddc49fe1162aa5 schema:name dimensions_id
    46 schema:value pub.1033900087
    47 rdf:type schema:PropertyValue
    48 N53a9aa75ed22481fac05d917117fe351 schema:volumeNumber 433
    49 rdf:type schema:PublicationVolume
    50 N54fefc86996d4ed4a6c428e6caa87dde rdf:first sg:person.0671611704.01
    51 rdf:rest N74e972b44391424dacd49d2d419af290
    52 N74e972b44391424dacd49d2d419af290 rdf:first sg:person.01050020710.05
    53 rdf:rest rdf:nil
    54 Na76161160440481eaaf51fe981f65d41 schema:issueNumber 7024
    55 rdf:type schema:PublicationIssue
    56 Nba1af07d9ca74fa68df88fd7aefcb034 schema:name nlm_unique_id
    57 schema:value 0410462
    58 rdf:type schema:PropertyValue
    59 Nddfec0ce95d142ae9434ab55d3372a71 schema:name pubmed_id
    60 schema:value 15674285
    61 rdf:type schema:PropertyValue
    62 Nde52d1e7b731427798b61ea468333c1d schema:name doi
    63 schema:value 10.1038/nature03248
    64 rdf:type schema:PropertyValue
    65 Nec964c7d49324ba6b6e7a7d95fd09b5e schema:name readcube_id
    66 schema:value a17dc2afa2120779de3d6fd0f196f7def0356af20721e2bd6b0a74d26b833c33
    67 rdf:type schema:PropertyValue
    68 Nedae6e6cf0ca458c8ce2b66c1aa302e3 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nf2c7322a21924056a8e5b1bab7d9a07b rdf:first sg:person.01341467407.33
    71 rdf:rest N54fefc86996d4ed4a6c428e6caa87dde
    72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Information and Computing Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information Systems
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1018957 schema:issn 0090-0028
    79 1476-4687
    80 schema:name Nature
    81 rdf:type schema:Periodical
    82 sg:person.01050020710.05 schema:affiliation https://www.grid.ac/institutes/grid.254250.4
    83 schema:familyName Makse
    84 schema:givenName Hernán A.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050020710.05
    86 rdf:type schema:Person
    87 sg:person.01341467407.33 schema:affiliation https://www.grid.ac/institutes/grid.254250.4
    88 schema:familyName Song
    89 schema:givenName Chaoming
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341467407.33
    91 rdf:type schema:Person
    92 sg:person.0671611704.01 schema:affiliation https://www.grid.ac/institutes/grid.22098.31
    93 schema:familyName Havlin
    94 schema:givenName Shlomo
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671611704.01
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-1-4899-2124-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043447712
    98 https://doi.org/10.1007/978-1-4899-2124-6
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-3-642-84868-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027887038
    101 https://doi.org/10.1007/978-3-642-84868-1
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    104 https://doi.org/10.1038/30918
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1038/35036627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510804
    107 https://doi.org/10.1038/35036627
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/43601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550067
    110 https://doi.org/10.1038/43601
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1140/epjb/e2004-00110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032650139
    113 https://doi.org/10.1140/epjb/e2004-00110-5
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1017/cbo9780511610905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666412
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1080/00018730110112519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965146
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1093/acprof:oso/9780198515906.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098793632
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1093/nar/28.1.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007406550
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1093/nar/28.1.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033572453
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1142/1407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098907782
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1145/316194.316229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063167710
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.22098.31 schema:alternateName Bar-Ilan University
    136 schema:name Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.254250.4 schema:alternateName City College of New York
    139 schema:name Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...