Nonlinear optics in the extreme ultraviolet View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-12

AUTHORS

Taro Sekikawa, Atsushi Kosuge, Teruto Kanai, Shuntaro Watanabe

ABSTRACT

Nonlinear responses to an optical field are universal in nature but have been difficult to observe in the extreme ultraviolet (XUV) and soft X-ray regions owing to a lack of coherent intense light sources. High harmonic generation is a well-known nonlinear optical phenomenon and is now drawing much attention in attosecond pulse generation. For the application of high harmonics to nonlinear optics in the XUV and soft X-ray regime, optical pulses should have both large pulse energy and short pulse duration to achieve a high optical electric field. Here we show the generation of intense isolated pulses from a single harmonic (photon energy 27.9 eV) by using a sub-10-femtosecond blue laser pulse, producing a large dipole moment at the relatively low (ninth) harmonic order nonadiabatically. The XUV pulses with pulse durations of 950 attoseconds and 1.3 femtoseconds were characterized by an autocorrelation technique, based on two-photon above-threshold ionization of helium atoms. Because of the small cross-section for above-threshold ionization, such an autocorrelation measurement of XUV pulses with photon energy larger than the ionization energy of helium has not hitherto been demonstrated. The technique can be extended to the characterization of higher harmonics at shorter wavelengths. More... »

PAGES

605

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

7017

VOLUME

432

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature03108

DOI

http://dx.doi.org/10.1038/nature03108

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030576818

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15577905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sekikawa", 
        "givenName": "Taro", 
        "id": "sg:person.07622626531.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622626531.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosuge", 
        "givenName": "Atsushi", 
        "id": "sg:person.01107566077.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107566077.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanai", 
        "givenName": "Teruto", 
        "id": "sg:person.01153057126.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153057126.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Shuntaro", 
        "id": "sg:person.01340243077.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340243077.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/josab.4.000595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005700934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/34/4/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036225553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036455982", 
          "https://doi.org/10.1038/nature02277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036455982", 
          "https://doi.org/10.1038/nature02277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044969185", 
          "https://doi.org/10.1038/nature02091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044969185", 
          "https://doi.org/10.1038/nature02091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35107000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049320028", 
          "https://doi.org/10.1038/35107000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35107000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049320028", 
          "https://doi.org/10.1038/35107000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1148286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057676637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.49.3881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060488527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.49.3881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060488527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.50.1540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060489256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.50.1540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060489256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.4960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.4960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.r2285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.r2285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.173903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.173903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.193902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.193902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.103902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.103902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1059413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.21.000219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065216523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.23.000064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.23.001384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.28.001484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065221180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "Nonlinear responses to an optical field are universal in nature but have been difficult to observe in the extreme ultraviolet (XUV) and soft X-ray regions owing to a lack of coherent intense light sources. High harmonic generation is a well-known nonlinear optical phenomenon and is now drawing much attention in attosecond pulse generation. For the application of high harmonics to nonlinear optics in the XUV and soft X-ray regime, optical pulses should have both large pulse energy and short pulse duration to achieve a high optical electric field. Here we show the generation of intense isolated pulses from a single harmonic (photon energy 27.9 eV) by using a sub-10-femtosecond blue laser pulse, producing a large dipole moment at the relatively low (ninth) harmonic order nonadiabatically. The XUV pulses with pulse durations of 950 attoseconds and 1.3 femtoseconds were characterized by an autocorrelation technique, based on two-photon above-threshold ionization of helium atoms. Because of the small cross-section for above-threshold ionization, such an autocorrelation measurement of XUV pulses with photon energy larger than the ionization energy of helium has not hitherto been demonstrated. The technique can be extended to the characterization of higher harmonics at shorter wavelengths.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature03108", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7017", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "432"
      }
    ], 
    "name": "Nonlinear optics in the extreme ultraviolet", 
    "pagination": "605", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91aa37aa6545573b93d82aa487736a10ab95be8e9be200b5a25eb6d90b0b91b2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15577905"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature03108"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030576818"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature03108", 
      "https://app.dimensions.ai/details/publication/pub.1030576818"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature03108"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature03108'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature03108'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature03108'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature03108'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature03108 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Ndb61c37808e6458da9e2044e88e8aa03
4 schema:citation sg:pub.10.1038/35107000
5 sg:pub.10.1038/nature02091
6 sg:pub.10.1038/nature02277
7 https://doi.org/10.1063/1.1148286
8 https://doi.org/10.1088/0953-4075/34/4/304
9 https://doi.org/10.1103/physreva.49.3881
10 https://doi.org/10.1103/physreva.50.1540
11 https://doi.org/10.1103/physreva.56.4960
12 https://doi.org/10.1103/physreva.57.r2285
13 https://doi.org/10.1103/physrevlett.42.1127
14 https://doi.org/10.1103/physrevlett.71.1994
15 https://doi.org/10.1103/physrevlett.78.1251
16 https://doi.org/10.1103/physrevlett.83.2564
17 https://doi.org/10.1103/physrevlett.88.173903
18 https://doi.org/10.1103/physrevlett.88.193902
19 https://doi.org/10.1103/physrevlett.91.103902
20 https://doi.org/10.1126/science.1059413
21 https://doi.org/10.1364/josab.4.000595
22 https://doi.org/10.1364/ol.21.000219
23 https://doi.org/10.1364/ol.23.000064
24 https://doi.org/10.1364/ol.23.001384
25 https://doi.org/10.1364/ol.28.001484
26 schema:datePublished 2004-12
27 schema:datePublishedReg 2004-12-01
28 schema:description Nonlinear responses to an optical field are universal in nature but have been difficult to observe in the extreme ultraviolet (XUV) and soft X-ray regions owing to a lack of coherent intense light sources. High harmonic generation is a well-known nonlinear optical phenomenon and is now drawing much attention in attosecond pulse generation. For the application of high harmonics to nonlinear optics in the XUV and soft X-ray regime, optical pulses should have both large pulse energy and short pulse duration to achieve a high optical electric field. Here we show the generation of intense isolated pulses from a single harmonic (photon energy 27.9 eV) by using a sub-10-femtosecond blue laser pulse, producing a large dipole moment at the relatively low (ninth) harmonic order nonadiabatically. The XUV pulses with pulse durations of 950 attoseconds and 1.3 femtoseconds were characterized by an autocorrelation technique, based on two-photon above-threshold ionization of helium atoms. Because of the small cross-section for above-threshold ionization, such an autocorrelation measurement of XUV pulses with photon energy larger than the ionization energy of helium has not hitherto been demonstrated. The technique can be extended to the characterization of higher harmonics at shorter wavelengths.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N16ae02e2836c44aea888e0214febdab6
33 Nf863fa9b96b849ad84710f4a25e6ce8b
34 sg:journal.1018957
35 schema:name Nonlinear optics in the extreme ultraviolet
36 schema:pagination 605
37 schema:productId N8fda30c763c64b578b214fb003d00a35
38 N980e77a84f5b4c358778977e8a7163a3
39 Na78b95d317c54334a7cb2c0c96bf7dbd
40 Nb2ead4f3bfc249e08eb481e08f1040e8
41 Ne782f20fc7d74987a05942e1fba7034d
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030576818
43 https://doi.org/10.1038/nature03108
44 schema:sdDatePublished 2019-04-11T12:25
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Ne3ab5ba390c24d26a6172b16f4067f69
47 schema:url https://www.nature.com/articles/nature03108
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N01cfb17ae2974e3a8a610754e588ab07 rdf:first sg:person.01107566077.60
52 rdf:rest Nce4640ea414a47858be511c2242365c6
53 N16ae02e2836c44aea888e0214febdab6 schema:volumeNumber 432
54 rdf:type schema:PublicationVolume
55 N7ea56ab58e8d4db488fbafee77114ec5 rdf:first sg:person.01340243077.50
56 rdf:rest rdf:nil
57 N8fda30c763c64b578b214fb003d00a35 schema:name dimensions_id
58 schema:value pub.1030576818
59 rdf:type schema:PropertyValue
60 N980e77a84f5b4c358778977e8a7163a3 schema:name readcube_id
61 schema:value 91aa37aa6545573b93d82aa487736a10ab95be8e9be200b5a25eb6d90b0b91b2
62 rdf:type schema:PropertyValue
63 Na78b95d317c54334a7cb2c0c96bf7dbd schema:name doi
64 schema:value 10.1038/nature03108
65 rdf:type schema:PropertyValue
66 Nb2ead4f3bfc249e08eb481e08f1040e8 schema:name nlm_unique_id
67 schema:value 0410462
68 rdf:type schema:PropertyValue
69 Nce4640ea414a47858be511c2242365c6 rdf:first sg:person.01153057126.49
70 rdf:rest N7ea56ab58e8d4db488fbafee77114ec5
71 Ndb61c37808e6458da9e2044e88e8aa03 rdf:first sg:person.07622626531.50
72 rdf:rest N01cfb17ae2974e3a8a610754e588ab07
73 Ne3ab5ba390c24d26a6172b16f4067f69 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ne782f20fc7d74987a05942e1fba7034d schema:name pubmed_id
76 schema:value 15577905
77 rdf:type schema:PropertyValue
78 Nf863fa9b96b849ad84710f4a25e6ce8b schema:issueNumber 7017
79 rdf:type schema:PublicationIssue
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
84 schema:name Optical Physics
85 rdf:type schema:DefinedTerm
86 sg:journal.1018957 schema:issn 0090-0028
87 1476-4687
88 schema:name Nature
89 rdf:type schema:Periodical
90 sg:person.01107566077.60 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
91 schema:familyName Kosuge
92 schema:givenName Atsushi
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107566077.60
94 rdf:type schema:Person
95 sg:person.01153057126.49 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
96 schema:familyName Kanai
97 schema:givenName Teruto
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153057126.49
99 rdf:type schema:Person
100 sg:person.01340243077.50 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
101 schema:familyName Watanabe
102 schema:givenName Shuntaro
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340243077.50
104 rdf:type schema:Person
105 sg:person.07622626531.50 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
106 schema:familyName Sekikawa
107 schema:givenName Taro
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622626531.50
109 rdf:type schema:Person
110 sg:pub.10.1038/35107000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049320028
111 https://doi.org/10.1038/35107000
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nature02091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044969185
114 https://doi.org/10.1038/nature02091
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature02277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036455982
117 https://doi.org/10.1038/nature02277
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.1148286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057676637
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0953-4075/34/4/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036225553
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreva.49.3881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060488527
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreva.50.1540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060489256
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.56.4960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493290
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreva.57.r2285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493928
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.42.1127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783504
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.71.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807615
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.78.1251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814709
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.83.2564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820083
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.88.173903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824767
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.88.193902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824828
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.91.103902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827184
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.1059413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444507
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/josab.4.000595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005700934
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1364/ol.21.000219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065216523
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1364/ol.23.000064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217756
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1364/ol.23.001384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218181
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1364/ol.28.001484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221180
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
158 schema:name Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...