A quantum fluid of metallic hydrogen suggested by first-principles calculations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-10

AUTHORS

Stanimir A. Bonev, Eric Schwegler, Tadashi Ogitsu, Giulia Galli

ABSTRACT

It is generally assumed1,2,3 that solid hydrogen will transform into a metallic alkali-like crystal at sufficiently high pressure. However, some theoretical models4,5 have also suggested that compressed hydrogen may form an unusual two-component (protons and electrons) metallic fluid at low temperature, or possibly even a zero-temperature liquid ground state. The existence of these new states of matter is conditional on the presence of a maximum in the melting temperature versus pressure curve (the ‘melt line’). Previous measurements6,7,8 of the hydrogen melt line up to pressures of 44 GPa have led to controversial conclusions regarding the existence of this maximum. Here we report ab initio calculations that establish the melt line up to 200 GPa. We predict that subtle changes in the intermolecular interactions lead to a decline of the melt line above 90 GPa. The implication is that as solid molecular hydrogen is compressed, it transforms into a low-temperature quantum fluid before becoming a monatomic crystal. The emerging low-temperature phase diagram of hydrogen and its isotopes bears analogies with the familiar phases of 3He and 4He (the only known zero-temperature liquids), but the long-range Coulomb interactions and the large component mass ratio present in hydrogen would result in dramatically different properties9. More... »

PAGES

669-672

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02968

DOI

http://dx.doi.org/10.1038/nature02968

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024735914

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15470423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonev", 
        "givenName": "Stanimir A.", 
        "id": "sg:person.01335200411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335200411.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwegler", 
        "givenName": "Eric", 
        "id": "sg:person.01031415334.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031415334.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ogitsu", 
        "givenName": "Tadashi", 
        "id": "sg:person.01231772564.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231772564.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galli", 
        "givenName": "Giulia", 
        "id": "sg:person.0644302543.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644302543.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/369384a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027350358", 
          "https://doi.org/10.1038/369384a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1675919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007622467", 
          "https://doi.org/10.1134/1.1675919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009173366", 
          "https://doi.org/10.1038/416613a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10", 
    "datePublishedReg": "2004-10-01", 
    "description": "It is generally assumed1,2,3 that solid hydrogen will transform into a metallic alkali-like crystal at sufficiently high pressure. However, some theoretical models4,5 have also suggested that compressed hydrogen may form an unusual two-component (protons and electrons) metallic fluid at low temperature, or possibly even a zero-temperature liquid ground state. The existence of these new states of matter is conditional on the presence of a maximum in the melting temperature versus pressure curve (the \u2018melt line\u2019). Previous measurements6,7,8 of the hydrogen melt line up to pressures of 44\u2009GPa have led to controversial conclusions regarding the existence of this maximum. Here we report ab initio calculations that establish the melt line up to 200\u2009GPa. We predict that subtle changes in the intermolecular interactions lead to a decline of the melt line above 90\u2009GPa. The implication is that as solid molecular hydrogen is compressed, it transforms into a low-temperature quantum fluid before becoming a monatomic crystal. The emerging low-temperature phase diagram of hydrogen and its isotopes bears analogies with the familiar phases of 3He and 4He (the only known zero-temperature liquids), but the long-range Coulomb interactions and the large component mass ratio present in hydrogen would result in dramatically different properties9.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature02968", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7009", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "431"
      }
    ], 
    "keywords": [
      "quantum fluids", 
      "liquid ground state", 
      "long-range Coulomb interaction", 
      "low-temperature phase diagram", 
      "melt line", 
      "component mass ratios", 
      "solid molecular hydrogen", 
      "first-principles calculations", 
      "ab initio calculations", 
      "ground state", 
      "Coulomb interaction", 
      "metallic hydrogen", 
      "solid hydrogen", 
      "metallic fluid", 
      "initio calculations", 
      "molecular hydrogen", 
      "monatomic crystals", 
      "phase diagram", 
      "new state", 
      "low temperature", 
      "mass ratio", 
      "intermolecular interactions", 
      "hydrogen", 
      "crystals", 
      "calculations", 
      "high pressure", 
      "GPa", 
      "familiar phases", 
      "state", 
      "temperature", 
      "maximum", 
      "isotopes", 
      "melting temperature", 
      "interaction", 
      "existence", 
      "diagram", 
      "lines", 
      "matter", 
      "analogy", 
      "subtle changes", 
      "phase", 
      "pressure", 
      "controversial conclusions", 
      "curves", 
      "ratio", 
      "presence", 
      "fluid", 
      "pressure curves", 
      "changes", 
      "implications", 
      "conclusion", 
      "decline"
    ], 
    "name": "A quantum fluid of metallic hydrogen suggested by first-principles calculations", 
    "pagination": "669-672", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024735914"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02968"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15470423"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02968", 
      "https://app.dimensions.ai/details/publication/pub.1024735914"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_378.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature02968"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02968'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02968'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02968'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02968'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      22 PREDICATES      83 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02968 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:0307
4 schema:author Nc650f856be874bd09d6ef94e5680071f
5 schema:citation sg:pub.10.1038/369384a0
6 sg:pub.10.1038/416613a
7 sg:pub.10.1134/1.1675919
8 schema:datePublished 2004-10
9 schema:datePublishedReg 2004-10-01
10 schema:description It is generally assumed1,2,3 that solid hydrogen will transform into a metallic alkali-like crystal at sufficiently high pressure. However, some theoretical models4,5 have also suggested that compressed hydrogen may form an unusual two-component (protons and electrons) metallic fluid at low temperature, or possibly even a zero-temperature liquid ground state. The existence of these new states of matter is conditional on the presence of a maximum in the melting temperature versus pressure curve (the ‘melt line’). Previous measurements6,7,8 of the hydrogen melt line up to pressures of 44 GPa have led to controversial conclusions regarding the existence of this maximum. Here we report ab initio calculations that establish the melt line up to 200 GPa. We predict that subtle changes in the intermolecular interactions lead to a decline of the melt line above 90 GPa. The implication is that as solid molecular hydrogen is compressed, it transforms into a low-temperature quantum fluid before becoming a monatomic crystal. The emerging low-temperature phase diagram of hydrogen and its isotopes bears analogies with the familiar phases of 3He and 4He (the only known zero-temperature liquids), but the long-range Coulomb interactions and the large component mass ratio present in hydrogen would result in dramatically different properties9.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N8624e27094504adaaa1c3dc1db2ed84b
15 Na44e834b67704af1b13e976cb3a456bc
16 sg:journal.1018957
17 schema:keywords Coulomb interaction
18 GPa
19 ab initio calculations
20 analogy
21 calculations
22 changes
23 component mass ratios
24 conclusion
25 controversial conclusions
26 crystals
27 curves
28 decline
29 diagram
30 existence
31 familiar phases
32 first-principles calculations
33 fluid
34 ground state
35 high pressure
36 hydrogen
37 implications
38 initio calculations
39 interaction
40 intermolecular interactions
41 isotopes
42 lines
43 liquid ground state
44 long-range Coulomb interaction
45 low temperature
46 low-temperature phase diagram
47 mass ratio
48 matter
49 maximum
50 melt line
51 melting temperature
52 metallic fluid
53 metallic hydrogen
54 molecular hydrogen
55 monatomic crystals
56 new state
57 phase
58 phase diagram
59 presence
60 pressure
61 pressure curves
62 quantum fluids
63 ratio
64 solid hydrogen
65 solid molecular hydrogen
66 state
67 subtle changes
68 temperature
69 schema:name A quantum fluid of metallic hydrogen suggested by first-principles calculations
70 schema:pagination 669-672
71 schema:productId N18b80b609ebe4735bf60758310282835
72 N72db51a814104fd1820c72bc3cf08d01
73 N8b2c8d4bc91046bca8c944b216d40411
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024735914
75 https://doi.org/10.1038/nature02968
76 schema:sdDatePublished 2022-05-20T07:22
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N7c0b6adab17f450092b4290945506d2e
79 schema:url https://doi.org/10.1038/nature02968
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N18b80b609ebe4735bf60758310282835 schema:name doi
84 schema:value 10.1038/nature02968
85 rdf:type schema:PropertyValue
86 N2c041d97898c49e7b36f3a5483216d76 rdf:first sg:person.01231772564.80
87 rdf:rest Nf72f70ddc30d4c54bdcb86dcc946b348
88 N72db51a814104fd1820c72bc3cf08d01 schema:name pubmed_id
89 schema:value 15470423
90 rdf:type schema:PropertyValue
91 N7c0b6adab17f450092b4290945506d2e schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N7f59d9eeb79b469dab2c6dfe5c702bae rdf:first sg:person.01031415334.01
94 rdf:rest N2c041d97898c49e7b36f3a5483216d76
95 N8624e27094504adaaa1c3dc1db2ed84b schema:issueNumber 7009
96 rdf:type schema:PublicationIssue
97 N8b2c8d4bc91046bca8c944b216d40411 schema:name dimensions_id
98 schema:value pub.1024735914
99 rdf:type schema:PropertyValue
100 Na44e834b67704af1b13e976cb3a456bc schema:volumeNumber 431
101 rdf:type schema:PublicationVolume
102 Nc650f856be874bd09d6ef94e5680071f rdf:first sg:person.01335200411.15
103 rdf:rest N7f59d9eeb79b469dab2c6dfe5c702bae
104 Nf72f70ddc30d4c54bdcb86dcc946b348 rdf:first sg:person.0644302543.32
105 rdf:rest rdf:nil
106 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Chemistry (incl. Structural)
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
113 schema:name Theoretical and Computational Chemistry
114 rdf:type schema:DefinedTerm
115 sg:journal.1018957 schema:issn 0028-0836
116 1476-4687
117 schema:name Nature
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01031415334.01 schema:affiliation grid-institutes:grid.250008.f
121 schema:familyName Schwegler
122 schema:givenName Eric
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031415334.01
124 rdf:type schema:Person
125 sg:person.01231772564.80 schema:affiliation grid-institutes:grid.250008.f
126 schema:familyName Ogitsu
127 schema:givenName Tadashi
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231772564.80
129 rdf:type schema:Person
130 sg:person.01335200411.15 schema:affiliation grid-institutes:grid.250008.f
131 schema:familyName Bonev
132 schema:givenName Stanimir A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335200411.15
134 rdf:type schema:Person
135 sg:person.0644302543.32 schema:affiliation grid-institutes:grid.250008.f
136 schema:familyName Galli
137 schema:givenName Giulia
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644302543.32
139 rdf:type schema:Person
140 sg:pub.10.1038/369384a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027350358
141 https://doi.org/10.1038/369384a0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/416613a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009173366
144 https://doi.org/10.1038/416613a
145 rdf:type schema:CreativeWork
146 sg:pub.10.1134/1.1675919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007622467
147 https://doi.org/10.1134/1.1675919
148 rdf:type schema:CreativeWork
149 grid-institutes:grid.250008.f schema:alternateName Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA
150 schema:name Lawrence Livermore National Laboratory, University of California, 94550, Livermore, California, USA
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...