Continuous generation of single photons with controlled waveform in an ion-trap cavity system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-10

AUTHORS

Matthias Keller, Birgit Lange, Kazuhiro Hayasaka, Wolfgang Lange, Herbert Walther

ABSTRACT

The controlled production of single photons is of fundamental and practical interest; they represent the lowest excited quantum states of the radiation field, and have applications in quantum cryptography and quantum information processing. Common approaches use the fluorescence of single ions, single molecules, colour centres and semiconductor quantum dots. However, the lack of control over such irreversible emission processes precludes the use of these sources in applications (such as quantum networks) that require coherent exchange of quantum states between atoms and photons. The necessary control may be achieved in principle in cavity quantum electrodynamics. Although this approach has been used for the production of single photons from atoms, such experiments are compromised by limited trapping times, fluctuating atom-field coupling and multi-atom effects. Here we demonstrate a single-photon source based on a strongly localized single ion in an optical cavity. The ion is optimally coupled to a well-defined field mode, resulting in the generation of single-photon pulses with precisely defined shape and timing. We have confirmed the suppression of two-photon events up to the limit imposed by fluctuations in the rate of detector dark counts. The stream of emitted photons is uninterrupted over the storage time of the ion, as demonstrated by a measurement of photon correlations over 90 min. More... »

PAGES

1075

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02961

DOI

http://dx.doi.org/10.1038/nature02961

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021237654

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15510142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keller", 
        "givenName": "Matthias", 
        "id": "sg:person.013774426175.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774426175.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lange", 
        "givenName": "Birgit", 
        "id": "sg:person.010313573533.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313573533.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Information and Communications Technology", 
          "id": "https://www.grid.ac/institutes/grid.28312.3a", 
          "name": [
            "National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayasaka", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.011547500325.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547500325.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lange", 
        "givenName": "Wolfgang", 
        "id": "sg:person.010403222617.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403222617.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany", 
            "Sektion Physik der Universit\u00e4t M\u00fcnchen, Am Coulombwall 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "Herbert", 
        "id": "sg:person.016355234775.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09500349708231869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000923431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004114648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004114648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-003-1114-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005970034", 
          "https://doi.org/10.1007/s00340-003-1114-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008282179", 
          "https://doi.org/10.1038/35035032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008282179", 
          "https://doi.org/10.1038/35035032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35051009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008492203", 
          "https://doi.org/10.1038/35051009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35051009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008492203", 
          "https://doi.org/10.1038/35051009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1095232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013113322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016707465", 
          "https://doi.org/10.1038/nature01086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016707465", 
          "https://doi.org/10.1038/nature01086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.032305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030096177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.032305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030096177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033391185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033391185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35102129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037067138", 
          "https://doi.org/10.1038/35102129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35102129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037067138", 
          "https://doi.org/10.1038/35102129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.067901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042593139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.067901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042593139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049532406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049532406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1415346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057704338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/6/1/095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059138020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada252261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1066790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062572553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.25.001294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065219362"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10", 
    "datePublishedReg": "2004-10-01", 
    "description": "The controlled production of single photons is of fundamental and practical interest; they represent the lowest excited quantum states of the radiation field, and have applications in quantum cryptography and quantum information processing. Common approaches use the fluorescence of single ions, single molecules, colour centres and semiconductor quantum dots. However, the lack of control over such irreversible emission processes precludes the use of these sources in applications (such as quantum networks) that require coherent exchange of quantum states between atoms and photons. The necessary control may be achieved in principle in cavity quantum electrodynamics. Although this approach has been used for the production of single photons from atoms, such experiments are compromised by limited trapping times, fluctuating atom-field coupling and multi-atom effects. Here we demonstrate a single-photon source based on a strongly localized single ion in an optical cavity. The ion is optimally coupled to a well-defined field mode, resulting in the generation of single-photon pulses with precisely defined shape and timing. We have confirmed the suppression of two-photon events up to the limit imposed by fluctuations in the rate of detector dark counts. The stream of emitted photons is uninterrupted over the storage time of the ion, as demonstrated by a measurement of photon correlations over 90 min.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02961", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7012", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "431"
      }
    ], 
    "name": "Continuous generation of single photons with controlled waveform in an ion-trap cavity system", 
    "pagination": "1075", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "652feba9a33560fd2e9eeb330cabc7010fa6797a5ade87fa7cfd2a26e5d904a8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15510142"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02961"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021237654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02961", 
      "https://app.dimensions.ai/details/publication/pub.1021237654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02961"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02961'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02961'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02961'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02961'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02961 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nbcafe0de5543415cbd8b808865d8238b
4 schema:citation sg:pub.10.1007/s00340-003-1114-x
5 sg:pub.10.1038/35035032
6 sg:pub.10.1038/35051009
7 sg:pub.10.1038/35102129
8 sg:pub.10.1038/nature01086
9 https://doi.org/10.1063/1.1415346
10 https://doi.org/10.1080/09500349708231869
11 https://doi.org/10.1088/1367-2630/6/1/095
12 https://doi.org/10.1103/physreva.67.032305
13 https://doi.org/10.1103/physrevlett.58.203
14 https://doi.org/10.1103/physrevlett.75.3788
15 https://doi.org/10.1103/physrevlett.78.3221
16 https://doi.org/10.1103/physrevlett.82.2594
17 https://doi.org/10.1103/physrevlett.85.1762
18 https://doi.org/10.1103/physrevlett.85.2392
19 https://doi.org/10.1103/physrevlett.85.290
20 https://doi.org/10.1103/physrevlett.86.1502
21 https://doi.org/10.1103/physrevlett.86.3534
22 https://doi.org/10.1103/physrevlett.89.067901
23 https://doi.org/10.1126/science.1066790
24 https://doi.org/10.1126/science.1095232
25 https://doi.org/10.1126/science.290.5500.2282
26 https://doi.org/10.1364/ol.25.001294
27 https://doi.org/10.21236/ada252261
28 schema:datePublished 2004-10
29 schema:datePublishedReg 2004-10-01
30 schema:description The controlled production of single photons is of fundamental and practical interest; they represent the lowest excited quantum states of the radiation field, and have applications in quantum cryptography and quantum information processing. Common approaches use the fluorescence of single ions, single molecules, colour centres and semiconductor quantum dots. However, the lack of control over such irreversible emission processes precludes the use of these sources in applications (such as quantum networks) that require coherent exchange of quantum states between atoms and photons. The necessary control may be achieved in principle in cavity quantum electrodynamics. Although this approach has been used for the production of single photons from atoms, such experiments are compromised by limited trapping times, fluctuating atom-field coupling and multi-atom effects. Here we demonstrate a single-photon source based on a strongly localized single ion in an optical cavity. The ion is optimally coupled to a well-defined field mode, resulting in the generation of single-photon pulses with precisely defined shape and timing. We have confirmed the suppression of two-photon events up to the limit imposed by fluctuations in the rate of detector dark counts. The stream of emitted photons is uninterrupted over the storage time of the ion, as demonstrated by a measurement of photon correlations over 90 min.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N28bb61d34dde4071acaa2cd2e1126bdc
35 Ne0a40f67155349c89914b25e92975bf6
36 sg:journal.1018957
37 schema:name Continuous generation of single photons with controlled waveform in an ion-trap cavity system
38 schema:pagination 1075
39 schema:productId N0698a0c090544e0d84d70fe95fb9b920
40 N27ed0d3536d944d48573bddd3ad1ffe4
41 N4c7ca76a46b74c309e75253471ac2a81
42 Ne9b658d93c5c4bfe806820890fe8cb8a
43 Neacf5a65035d45629c14c79bcb689e42
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021237654
45 https://doi.org/10.1038/nature02961
46 schema:sdDatePublished 2019-04-10T17:42
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N655e5464bf75443cbf06d4f5b3a1a4c0
49 schema:url https://www.nature.com/articles/nature02961
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0698a0c090544e0d84d70fe95fb9b920 schema:name pubmed_id
54 schema:value 15510142
55 rdf:type schema:PropertyValue
56 N1e924a3078e84a79a9203150bb5c4553 rdf:first sg:person.010313573533.45
57 rdf:rest N63ad48fa53494d06bf7d5723bfedacc3
58 N27ed0d3536d944d48573bddd3ad1ffe4 schema:name dimensions_id
59 schema:value pub.1021237654
60 rdf:type schema:PropertyValue
61 N28bb61d34dde4071acaa2cd2e1126bdc schema:volumeNumber 431
62 rdf:type schema:PublicationVolume
63 N4c7ca76a46b74c309e75253471ac2a81 schema:name readcube_id
64 schema:value 652feba9a33560fd2e9eeb330cabc7010fa6797a5ade87fa7cfd2a26e5d904a8
65 rdf:type schema:PropertyValue
66 N58dacfe087c446ed8c96f58de808d45c rdf:first sg:person.010403222617.04
67 rdf:rest Nf65bdf70f0234b3493cfee647d5220f7
68 N63ad48fa53494d06bf7d5723bfedacc3 rdf:first sg:person.011547500325.04
69 rdf:rest N58dacfe087c446ed8c96f58de808d45c
70 N655e5464bf75443cbf06d4f5b3a1a4c0 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nbcafe0de5543415cbd8b808865d8238b rdf:first sg:person.013774426175.16
73 rdf:rest N1e924a3078e84a79a9203150bb5c4553
74 Ne0a40f67155349c89914b25e92975bf6 schema:issueNumber 7012
75 rdf:type schema:PublicationIssue
76 Ne9b658d93c5c4bfe806820890fe8cb8a schema:name doi
77 schema:value 10.1038/nature02961
78 rdf:type schema:PropertyValue
79 Neacf5a65035d45629c14c79bcb689e42 schema:name nlm_unique_id
80 schema:value 0410462
81 rdf:type schema:PropertyValue
82 Nf65bdf70f0234b3493cfee647d5220f7 rdf:first sg:person.016355234775.61
83 rdf:rest rdf:nil
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
88 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
89 rdf:type schema:DefinedTerm
90 sg:journal.1018957 schema:issn 0090-0028
91 1476-4687
92 schema:name Nature
93 rdf:type schema:Periodical
94 sg:person.010313573533.45 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
95 schema:familyName Lange
96 schema:givenName Birgit
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313573533.45
98 rdf:type schema:Person
99 sg:person.010403222617.04 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
100 schema:familyName Lange
101 schema:givenName Wolfgang
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403222617.04
103 rdf:type schema:Person
104 sg:person.011547500325.04 schema:affiliation https://www.grid.ac/institutes/grid.28312.3a
105 schema:familyName Hayasaka
106 schema:givenName Kazuhiro
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547500325.04
108 rdf:type schema:Person
109 sg:person.013774426175.16 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
110 schema:familyName Keller
111 schema:givenName Matthias
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774426175.16
113 rdf:type schema:Person
114 sg:person.016355234775.61 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
115 schema:familyName Walther
116 schema:givenName Herbert
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
118 rdf:type schema:Person
119 sg:pub.10.1007/s00340-003-1114-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005970034
120 https://doi.org/10.1007/s00340-003-1114-x
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/35035032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008282179
123 https://doi.org/10.1038/35035032
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/35051009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008492203
126 https://doi.org/10.1038/35051009
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/35102129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037067138
129 https://doi.org/10.1038/35102129
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature01086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016707465
132 https://doi.org/10.1038/nature01086
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1415346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704338
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/09500349708231869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000923431
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/1367-2630/6/1/095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059138020
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreva.67.032305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030096177
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.58.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794958
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.75.3788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812162
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.78.3221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038879203
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.82.2594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532406
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.85.1762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004114648
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.85.2392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821840
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.85.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821930
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.86.1502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033391185
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.86.3534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822899
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.89.067901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042593139
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1066790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445640
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.1095232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013113322
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.290.5500.2282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572553
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1364/ol.25.001294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219362
169 rdf:type schema:CreativeWork
170 https://doi.org/10.21236/ada252261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805246
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.28312.3a schema:alternateName National Institute of Information and Communications Technology
173 schema:name National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492, Japan
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
176 schema:name Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
179 schema:name Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
180 Sektion Physik der Universität München, Am Coulombwall 1, 85748 Garching, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...