Pack-MULE transposable elements mediate gene evolution in plants View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-09

AUTHORS

Ning Jiang, Zhirong Bao, Xiaoyu Zhang, Sean R. Eddy, Susan R. Wessler

ABSTRACT

Mutator-like transposable elements (MULEs) are found in many eukaryotic genomes and are especially prevalent in higher plants1,2,3. In maize, rice and Arabidopsis a few MULEs were shown to carry fragments of cellular genes4,5,6. These chimaeric elements are called Pack-MULEs in this study. The abundance of MULEs in rice and the availability of most of the genome sequence permitted a systematic analysis of the prevalence and nature of Pack-MULEs in an entire genome. Here we report that there are over 3,000 Pack-MULEs in rice containing fragments derived from more than 1,000 cellular genes. Pack-MULEs frequently contain fragments from multiple chromosomal loci that are fused to form new open reading frames, some of which are expressed as chimaeric transcripts. About 5% of the Pack-MULEs are represented in collections of complementary DNA. Functional analysis of amino acid sequences and proteomic data indicate that some captured gene fragments might be functional. Comparison of the cellular genes and Pack-MULE counterparts indicates that fragments of genomic DNA have been captured, rearranged and amplified over millions of years. Given the abundance of Pack-MULEs in rice and the widespread occurrence of MULEs in all characterized plant genomes, gene fragment acquisition by Pack-MULEs might represent an important new mechanism for the evolution of genes in higher plants. More... »

PAGES

569-573

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02953

DOI

http://dx.doi.org/10.1038/nature02953

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051563798

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15457261


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Transposable Elements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Open Reading Frames", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oryza", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Horticulture, Michigan State University, 48824, East Lansing, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA", 
            "Department of Horticulture, Michigan State University, 48824, East Lansing, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Ning", 
        "id": "sg:person.01070147067.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070147067.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genome Sciences, University of Washington, 98195, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Howard Hughes Medical Institute and Department of Genetics, Washington University, 63108, St Louis, Missouri, USA", 
            "Department of Genome Sciences, University of Washington, 98195, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bao", 
        "givenName": "Zhirong", 
        "id": "sg:person.01277306652.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277306652.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular, Cell, and Developmental Biology, University of California, 90095, Los Angeles, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA", 
            "Department of Molecular, Cell, and Developmental Biology, University of California, 90095, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiaoyu", 
        "id": "sg:person.015746716621.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746716621.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Howard Hughes Medical Institute and Department of Genetics, Washington University, 63108, St Louis, Missouri, USA", 
          "id": "http://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Howard Hughes Medical Institute and Department of Genetics, Washington University, 63108, St Louis, Missouri, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eddy", 
        "givenName": "Sean R.", 
        "id": "sg:person.01147146630.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147146630.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA", 
          "id": "http://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wessler", 
        "givenName": "Susan R.", 
        "id": "sg:person.01331503465.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331503465.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00222890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040033827", 
          "https://doi.org/10.1007/bf00222890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00264223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053593402", 
          "https://doi.org/10.1007/bf00264223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046673491", 
          "https://doi.org/10.1038/nature01184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030621616", 
          "https://doi.org/10.1038/nature01214"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-09", 
    "datePublishedReg": "2004-09-01", 
    "description": "Mutator-like transposable elements (MULEs) are found in many eukaryotic genomes and are especially prevalent in higher plants1,2,3. In maize, rice and Arabidopsis a few MULEs were shown to carry fragments of cellular genes4,5,6. These chimaeric elements are called Pack-MULEs in this study. The abundance of MULEs in rice and the availability of most of the genome sequence permitted a systematic analysis of the prevalence and nature of Pack-MULEs in an entire genome. Here we report that there are over 3,000 Pack-MULEs in rice containing fragments derived from more than 1,000 cellular genes. Pack-MULEs frequently contain fragments from multiple chromosomal loci that are fused to form new open reading frames, some of which are expressed as chimaeric transcripts. About 5% of the Pack-MULEs are represented in collections of complementary DNA. Functional analysis of amino acid sequences and proteomic data indicate that some captured gene fragments might be functional. Comparison of the cellular genes and Pack-MULE counterparts indicates that fragments of genomic DNA have been captured, rearranged and amplified over millions of years. Given the abundance of Pack-MULEs in rice and the widespread occurrence of MULEs in all characterized plant genomes, gene fragment acquisition by Pack-MULEs might represent an important new mechanism for the evolution of genes in higher plants.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature02953", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7008", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "431"
      }
    ], 
    "keywords": [
      "Mutator-like transposable elements", 
      "Pack-MULEs", 
      "transposable elements", 
      "cellular genes", 
      "new open reading frames", 
      "evolution of genes", 
      "open reading frame", 
      "amino acid sequence", 
      "multiple chromosomal loci", 
      "plant genomes", 
      "gene evolution", 
      "eukaryotic genomes", 
      "millions of years", 
      "higher plants", 
      "genome sequence", 
      "entire genome", 
      "reading frame", 
      "proteomic data", 
      "chromosomal loci", 
      "acid sequence", 
      "important new mechanism", 
      "gene fragments", 
      "genomic DNA", 
      "functional analysis", 
      "genome", 
      "chimaeric transcripts", 
      "complementary DNA", 
      "genes", 
      "rice", 
      "widespread occurrence", 
      "plants", 
      "DNA", 
      "abundance", 
      "fragments", 
      "sequence", 
      "Arabidopsis", 
      "new mechanism", 
      "loci", 
      "transcripts", 
      "maize", 
      "systematic analysis", 
      "evolution", 
      "mechanism", 
      "availability", 
      "elements", 
      "analysis", 
      "frame", 
      "occurrence", 
      "millions", 
      "counterparts", 
      "collection", 
      "acquisition", 
      "study", 
      "data", 
      "nature", 
      "comparison", 
      "years", 
      "prevalence"
    ], 
    "name": "Pack-MULE transposable elements mediate gene evolution in plants", 
    "pagination": "569-573", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051563798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02953"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15457261"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02953", 
      "https://app.dimensions.ai/details/publication/pub.1051563798"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_385.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature02953"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02953'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02953'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02953'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02953'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      97 URIs      85 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02953 schema:about N0ac83d86a6254ff685d9b6a588a4784b
2 N35a2838c7c394b3a9edb4b7c2531376f
3 N3c993c54c9534898981c8b4f0d898c9a
4 N4c803b68a63f49e19ba679338ba6d8e5
5 N4dc7f1254c9c4373979756bca97d946e
6 N8ff9e95388a14b978e0d2f2701483633
7 N9ea871e2009a4731aaef57c9263d3927
8 Ndf064692ccc144eb89fb13f8c48dec36
9 Nfe592b14e9784ea8a1f036e91340104b
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Nbe3fbc7f8a73451a825ecb3cc41aa772
13 schema:citation sg:pub.10.1007/bf00222890
14 sg:pub.10.1007/bf00264223
15 sg:pub.10.1038/nature01184
16 sg:pub.10.1038/nature01214
17 schema:datePublished 2004-09
18 schema:datePublishedReg 2004-09-01
19 schema:description Mutator-like transposable elements (MULEs) are found in many eukaryotic genomes and are especially prevalent in higher plants1,2,3. In maize, rice and Arabidopsis a few MULEs were shown to carry fragments of cellular genes4,5,6. These chimaeric elements are called Pack-MULEs in this study. The abundance of MULEs in rice and the availability of most of the genome sequence permitted a systematic analysis of the prevalence and nature of Pack-MULEs in an entire genome. Here we report that there are over 3,000 Pack-MULEs in rice containing fragments derived from more than 1,000 cellular genes. Pack-MULEs frequently contain fragments from multiple chromosomal loci that are fused to form new open reading frames, some of which are expressed as chimaeric transcripts. About 5% of the Pack-MULEs are represented in collections of complementary DNA. Functional analysis of amino acid sequences and proteomic data indicate that some captured gene fragments might be functional. Comparison of the cellular genes and Pack-MULE counterparts indicates that fragments of genomic DNA have been captured, rearranged and amplified over millions of years. Given the abundance of Pack-MULEs in rice and the widespread occurrence of MULEs in all characterized plant genomes, gene fragment acquisition by Pack-MULEs might represent an important new mechanism for the evolution of genes in higher plants.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N0484f54472794168a2443648e52bb29a
23 Nddcb8ece9a954527a1b8564d63fa1654
24 sg:journal.1018957
25 schema:keywords Arabidopsis
26 DNA
27 Mutator-like transposable elements
28 Pack-MULEs
29 abundance
30 acid sequence
31 acquisition
32 amino acid sequence
33 analysis
34 availability
35 cellular genes
36 chimaeric transcripts
37 chromosomal loci
38 collection
39 comparison
40 complementary DNA
41 counterparts
42 data
43 elements
44 entire genome
45 eukaryotic genomes
46 evolution
47 evolution of genes
48 fragments
49 frame
50 functional analysis
51 gene evolution
52 gene fragments
53 genes
54 genome
55 genome sequence
56 genomic DNA
57 higher plants
58 important new mechanism
59 loci
60 maize
61 mechanism
62 millions
63 millions of years
64 multiple chromosomal loci
65 nature
66 new mechanism
67 new open reading frames
68 occurrence
69 open reading frame
70 plant genomes
71 plants
72 prevalence
73 proteomic data
74 reading frame
75 rice
76 sequence
77 study
78 systematic analysis
79 transcripts
80 transposable elements
81 widespread occurrence
82 years
83 schema:name Pack-MULE transposable elements mediate gene evolution in plants
84 schema:pagination 569-573
85 schema:productId N60b49d12ac3a46af9d86bf0763e55b3d
86 N9e19fdb1ece440db8e196f8bae8d9eef
87 Nd2a0078f7b6a4499bf7b47f25531a293
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051563798
89 https://doi.org/10.1038/nature02953
90 schema:sdDatePublished 2022-11-24T20:51
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nf1559da55f134783b5706a07abf0274f
93 schema:url https://doi.org/10.1038/nature02953
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0484f54472794168a2443648e52bb29a schema:issueNumber 7008
98 rdf:type schema:PublicationIssue
99 N06eb8b9f9b2f40daa31d5f5e5ab5e908 rdf:first sg:person.01331503465.49
100 rdf:rest rdf:nil
101 N0ac83d86a6254ff685d9b6a588a4784b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Evolution, Molecular
103 rdf:type schema:DefinedTerm
104 N1c6f3fbe46f9445aa6f67a136ac4d65c rdf:first sg:person.015746716621.99
105 rdf:rest N7bf98cb84c074a378dd11caf559dcebf
106 N35a2838c7c394b3a9edb4b7c2531376f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Genes, Plant
108 rdf:type schema:DefinedTerm
109 N3c993c54c9534898981c8b4f0d898c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Open Reading Frames
111 rdf:type schema:DefinedTerm
112 N4c803b68a63f49e19ba679338ba6d8e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Mutagenesis
114 rdf:type schema:DefinedTerm
115 N4dc7f1254c9c4373979756bca97d946e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genome, Plant
117 rdf:type schema:DefinedTerm
118 N4ed65befce804c1f86feeacda000d0cd rdf:first sg:person.01277306652.13
119 rdf:rest N1c6f3fbe46f9445aa6f67a136ac4d65c
120 N60b49d12ac3a46af9d86bf0763e55b3d schema:name pubmed_id
121 schema:value 15457261
122 rdf:type schema:PropertyValue
123 N7bf98cb84c074a378dd11caf559dcebf rdf:first sg:person.01147146630.65
124 rdf:rest N06eb8b9f9b2f40daa31d5f5e5ab5e908
125 N8ff9e95388a14b978e0d2f2701483633 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Oryza
127 rdf:type schema:DefinedTerm
128 N9e19fdb1ece440db8e196f8bae8d9eef schema:name dimensions_id
129 schema:value pub.1051563798
130 rdf:type schema:PropertyValue
131 N9ea871e2009a4731aaef57c9263d3927 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Base Sequence
133 rdf:type schema:DefinedTerm
134 Nbe3fbc7f8a73451a825ecb3cc41aa772 rdf:first sg:person.01070147067.17
135 rdf:rest N4ed65befce804c1f86feeacda000d0cd
136 Nd2a0078f7b6a4499bf7b47f25531a293 schema:name doi
137 schema:value 10.1038/nature02953
138 rdf:type schema:PropertyValue
139 Nddcb8ece9a954527a1b8564d63fa1654 schema:volumeNumber 431
140 rdf:type schema:PublicationVolume
141 Ndf064692ccc144eb89fb13f8c48dec36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Genomics
143 rdf:type schema:DefinedTerm
144 Nf1559da55f134783b5706a07abf0274f schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 Nfe592b14e9784ea8a1f036e91340104b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name DNA Transposable Elements
148 rdf:type schema:DefinedTerm
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
153 schema:name Genetics
154 rdf:type schema:DefinedTerm
155 sg:journal.1018957 schema:issn 0028-0836
156 1476-4687
157 schema:name Nature
158 schema:publisher Springer Nature
159 rdf:type schema:Periodical
160 sg:person.01070147067.17 schema:affiliation grid-institutes:grid.17088.36
161 schema:familyName Jiang
162 schema:givenName Ning
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070147067.17
164 rdf:type schema:Person
165 sg:person.01147146630.65 schema:affiliation grid-institutes:grid.4367.6
166 schema:familyName Eddy
167 schema:givenName Sean R.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147146630.65
169 rdf:type schema:Person
170 sg:person.01277306652.13 schema:affiliation grid-institutes:grid.34477.33
171 schema:familyName Bao
172 schema:givenName Zhirong
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277306652.13
174 rdf:type schema:Person
175 sg:person.01331503465.49 schema:affiliation grid-institutes:grid.213876.9
176 schema:familyName Wessler
177 schema:givenName Susan R.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331503465.49
179 rdf:type schema:Person
180 sg:person.015746716621.99 schema:affiliation grid-institutes:grid.19006.3e
181 schema:familyName Zhang
182 schema:givenName Xiaoyu
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746716621.99
184 rdf:type schema:Person
185 sg:pub.10.1007/bf00222890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040033827
186 https://doi.org/10.1007/bf00222890
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/bf00264223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053593402
189 https://doi.org/10.1007/bf00264223
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nature01184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046673491
192 https://doi.org/10.1038/nature01184
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature01214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030621616
195 https://doi.org/10.1038/nature01214
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.17088.36 schema:alternateName Department of Horticulture, Michigan State University, 48824, East Lansing, Michigan, USA
198 schema:name Department of Horticulture, Michigan State University, 48824, East Lansing, Michigan, USA
199 Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA
200 rdf:type schema:Organization
201 grid-institutes:grid.19006.3e schema:alternateName Department of Molecular, Cell, and Developmental Biology, University of California, 90095, Los Angeles, California, USA
202 schema:name Department of Molecular, Cell, and Developmental Biology, University of California, 90095, Los Angeles, California, USA
203 Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA
204 rdf:type schema:Organization
205 grid-institutes:grid.213876.9 schema:alternateName Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA
206 schema:name Department of Plant Biology, University of Georgia, 30602, Athens, Georgia, USA
207 rdf:type schema:Organization
208 grid-institutes:grid.34477.33 schema:alternateName Department of Genome Sciences, University of Washington, 98195, Seattle, Washington, USA
209 schema:name Department of Genome Sciences, University of Washington, 98195, Seattle, Washington, USA
210 Howard Hughes Medical Institute and Department of Genetics, Washington University, 63108, St Louis, Missouri, USA
211 rdf:type schema:Organization
212 grid-institutes:grid.4367.6 schema:alternateName Howard Hughes Medical Institute and Department of Genetics, Washington University, 63108, St Louis, Missouri, USA
213 schema:name Howard Hughes Medical Institute and Department of Genetics, Washington University, 63108, St Louis, Missouri, USA
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...