Quantification of modelling uncertainties in a large ensemble of climate change simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08

AUTHORS

James M. Murphy, David M. H. Sexton, David N. Barnett, Gareth S. Jones, Mark J. Webb, Matthew Collins, David A. Stainforth

ABSTRACT

Comprehensive global climate models1 are the only tools that account for the complex set of processes which will determine future climate change at both a global and regional level. Planners are typically faced with a wide range of predicted changes from different models of unknown relative quality2,3, owing to large but unquantified uncertainties in the modelling process4. Here we report a systematic attempt to determine the range of climate changes consistent with these uncertainties, based on a 53-member ensemble of model versions constructed by varying model parameters. We estimate a probability density function for the sensitivity of climate to a doubling of atmospheric carbon dioxide levels, and obtain a 5–95 per cent probability range of 2.4–5.4 °C. Our probability density function is constrained by objective estimates of the relative reliability of different model versions, the choice of model parameters that are varied and their uncertainty ranges, specified on the basis of expert advice. Our ensemble produces a range of regional changes much wider than indicated by traditional methods based on scaling the response patterns of an individual simulation5,6. More... »

PAGES

768-772

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02771

DOI

http://dx.doi.org/10.1038/nature02771

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036499414

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15306806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murphy", 
        "givenName": "James M.", 
        "id": "sg:person.07573103435.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573103435.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sexton", 
        "givenName": "David M. H.", 
        "id": "sg:person.014153746435.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnett", 
        "givenName": "David N.", 
        "id": "sg:person.0652260024.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652260024.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Gareth S.", 
        "id": "sg:person.012111414471.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111414471.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webb", 
        "givenName": "Mark J.", 
        "id": "sg:person.010673066557.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "Matthew", 
        "id": "sg:person.013273650700.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013273650700.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stainforth", 
        "givenName": "David A.", 
        "id": "sg:person.01357463170.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357463170.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01092a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044980256", 
          "https://doi.org/10.1038/nature01092a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416719a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016686487", 
          "https://doi.org/10.1038/416719a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050873012", 
          "https://doi.org/10.1007/s003820050201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303772", 
          "https://doi.org/10.1038/35036559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170907", 
          "https://doi.org/10.1007/s003820050009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415514a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038659743", 
          "https://doi.org/10.1038/415514a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242699", 
          "https://doi.org/10.1007/s003820050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416723a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022821020", 
          "https://doi.org/10.1038/416723a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08", 
    "datePublishedReg": "2004-08-01", 
    "description": "Comprehensive global climate models1 are the only tools that account for the complex set of processes which will determine future climate change at both a global and regional level. Planners are typically faced with a wide range of predicted changes from different models of unknown relative quality2,3, owing to large but unquantified uncertainties in the modelling process4. Here we report a systematic attempt to determine the range of climate changes consistent with these uncertainties, based on a 53-member ensemble of model versions constructed by varying model parameters. We estimate a probability density function for the sensitivity of climate to a doubling of atmospheric carbon dioxide levels, and obtain a 5\u201395 per cent probability range of 2.4\u20135.4\u2009\u00b0C. Our probability density function is constrained by objective estimates of the relative reliability of different model versions, the choice of model parameters that are varied and their uncertainty ranges, specified on the basis of expert advice. Our ensemble produces a range of regional changes much wider than indicated by traditional methods based on scaling the response patterns of an individual simulation5,6.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature02771", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7001", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "430"
      }
    ], 
    "keywords": [
      "model versions", 
      "climate change", 
      "atmospheric carbon dioxide levels", 
      "sensitivity of climate", 
      "climate change simulations", 
      "future climate change", 
      "different model versions", 
      "change simulations", 
      "large ensemble", 
      "uncertainty range", 
      "carbon dioxide levels", 
      "regional changes", 
      "unquantified uncertainty", 
      "probability density function", 
      "model parameters", 
      "ensemble", 
      "probability range", 
      "uncertainty", 
      "density function", 
      "climate", 
      "objective estimates", 
      "models1", 
      "changes", 
      "only tool", 
      "regional level", 
      "different models", 
      "estimates", 
      "range", 
      "complex set", 
      "wide range", 
      "doubling", 
      "patterns", 
      "response patterns", 
      "simulations", 
      "systematic attempt", 
      "parameters", 
      "model", 
      "quantification", 
      "process", 
      "planners", 
      "version", 
      "levels", 
      "set", 
      "basis", 
      "traditional methods", 
      "sensitivity", 
      "attempt", 
      "tool", 
      "relative reliability", 
      "method", 
      "reliability", 
      "function", 
      "choice", 
      "expert advice", 
      "advice"
    ], 
    "name": "Quantification of modelling uncertainties in a large ensemble of climate change simulations", 
    "pagination": "768-772", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036499414"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02771"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15306806"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02771", 
      "https://app.dimensions.ai/details/publication/pub.1036499414"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_383.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature02771"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02771'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02771'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02771'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02771'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      90 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02771 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N51e405b8ded4425e8e15f4235de97ce6
4 schema:citation sg:pub.10.1007/s003820050009
5 sg:pub.10.1007/s003820050010
6 sg:pub.10.1007/s003820050201
7 sg:pub.10.1038/35036559
8 sg:pub.10.1038/415514a
9 sg:pub.10.1038/416719a
10 sg:pub.10.1038/416723a
11 sg:pub.10.1038/nature01092
12 sg:pub.10.1038/nature01092a
13 schema:datePublished 2004-08
14 schema:datePublishedReg 2004-08-01
15 schema:description Comprehensive global climate models1 are the only tools that account for the complex set of processes which will determine future climate change at both a global and regional level. Planners are typically faced with a wide range of predicted changes from different models of unknown relative quality2,3, owing to large but unquantified uncertainties in the modelling process4. Here we report a systematic attempt to determine the range of climate changes consistent with these uncertainties, based on a 53-member ensemble of model versions constructed by varying model parameters. We estimate a probability density function for the sensitivity of climate to a doubling of atmospheric carbon dioxide levels, and obtain a 5–95 per cent probability range of 2.4–5.4 °C. Our probability density function is constrained by objective estimates of the relative reliability of different model versions, the choice of model parameters that are varied and their uncertainty ranges, specified on the basis of expert advice. Our ensemble produces a range of regional changes much wider than indicated by traditional methods based on scaling the response patterns of an individual simulation5,6.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N13a6e54c1e70412ba520de0794aca8f7
19 Nc915426e16b546098d68e2278595ce11
20 sg:journal.1018957
21 schema:keywords advice
22 atmospheric carbon dioxide levels
23 attempt
24 basis
25 carbon dioxide levels
26 change simulations
27 changes
28 choice
29 climate
30 climate change
31 climate change simulations
32 complex set
33 density function
34 different model versions
35 different models
36 doubling
37 ensemble
38 estimates
39 expert advice
40 function
41 future climate change
42 large ensemble
43 levels
44 method
45 model
46 model parameters
47 model versions
48 models1
49 objective estimates
50 only tool
51 parameters
52 patterns
53 planners
54 probability density function
55 probability range
56 process
57 quantification
58 range
59 regional changes
60 regional level
61 relative reliability
62 reliability
63 response patterns
64 sensitivity
65 sensitivity of climate
66 set
67 simulations
68 systematic attempt
69 tool
70 traditional methods
71 uncertainty
72 uncertainty range
73 unquantified uncertainty
74 version
75 wide range
76 schema:name Quantification of modelling uncertainties in a large ensemble of climate change simulations
77 schema:pagination 768-772
78 schema:productId N2e0903d09aa7436fb639532d5350cea6
79 Nc5e6433214a74387a4adfb6339146a09
80 Ne4781ffd1cdb4cb7a3afdbab20868c60
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
82 https://doi.org/10.1038/nature02771
83 schema:sdDatePublished 2022-12-01T06:24
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N503e8ce9a7c640fc8dde4e342fd801a9
86 schema:url https://doi.org/10.1038/nature02771
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N13a6e54c1e70412ba520de0794aca8f7 schema:issueNumber 7001
91 rdf:type schema:PublicationIssue
92 N2e0903d09aa7436fb639532d5350cea6 schema:name pubmed_id
93 schema:value 15306806
94 rdf:type schema:PropertyValue
95 N3995d885b4284fde81d20d7e30b70d20 rdf:first sg:person.010673066557.41
96 rdf:rest N7e152584824045ab8bde5e4e940a22f7
97 N503e8ce9a7c640fc8dde4e342fd801a9 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N51e405b8ded4425e8e15f4235de97ce6 rdf:first sg:person.07573103435.16
100 rdf:rest N559a8b0795e240debafbab8bd1b96415
101 N559a8b0795e240debafbab8bd1b96415 rdf:first sg:person.014153746435.96
102 rdf:rest Nca8af68182214f7cb7f60e82889d50ae
103 N7e152584824045ab8bde5e4e940a22f7 rdf:first sg:person.013273650700.59
104 rdf:rest Ndf242c46b74f4da7854cbaf474f3a9b8
105 Nc039fd30b02c42f18b19b2382f8c059b rdf:first sg:person.012111414471.07
106 rdf:rest N3995d885b4284fde81d20d7e30b70d20
107 Nc5e6433214a74387a4adfb6339146a09 schema:name doi
108 schema:value 10.1038/nature02771
109 rdf:type schema:PropertyValue
110 Nc915426e16b546098d68e2278595ce11 schema:volumeNumber 430
111 rdf:type schema:PublicationVolume
112 Nca8af68182214f7cb7f60e82889d50ae rdf:first sg:person.0652260024.79
113 rdf:rest Nc039fd30b02c42f18b19b2382f8c059b
114 Ndf242c46b74f4da7854cbaf474f3a9b8 rdf:first sg:person.01357463170.43
115 rdf:rest rdf:nil
116 Ne4781ffd1cdb4cb7a3afdbab20868c60 schema:name dimensions_id
117 schema:value pub.1036499414
118 rdf:type schema:PropertyValue
119 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
120 schema:name Mathematical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
123 schema:name Statistics
124 rdf:type schema:DefinedTerm
125 sg:journal.1018957 schema:issn 0028-0836
126 1476-4687
127 schema:name Nature
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.010673066557.41 schema:affiliation grid-institutes:grid.17100.37
131 schema:familyName Webb
132 schema:givenName Mark J.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41
134 rdf:type schema:Person
135 sg:person.012111414471.07 schema:affiliation grid-institutes:grid.17100.37
136 schema:familyName Jones
137 schema:givenName Gareth S.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111414471.07
139 rdf:type schema:Person
140 sg:person.013273650700.59 schema:affiliation grid-institutes:grid.17100.37
141 schema:familyName Collins
142 schema:givenName Matthew
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013273650700.59
144 rdf:type schema:Person
145 sg:person.01357463170.43 schema:affiliation grid-institutes:grid.4991.5
146 schema:familyName Stainforth
147 schema:givenName David A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357463170.43
149 rdf:type schema:Person
150 sg:person.014153746435.96 schema:affiliation grid-institutes:grid.17100.37
151 schema:familyName Sexton
152 schema:givenName David M. H.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96
154 rdf:type schema:Person
155 sg:person.0652260024.79 schema:affiliation grid-institutes:grid.17100.37
156 schema:familyName Barnett
157 schema:givenName David N.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652260024.79
159 rdf:type schema:Person
160 sg:person.07573103435.16 schema:affiliation grid-institutes:grid.17100.37
161 schema:familyName Murphy
162 schema:givenName James M.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573103435.16
164 rdf:type schema:Person
165 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
166 https://doi.org/10.1007/s003820050009
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
169 https://doi.org/10.1007/s003820050010
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s003820050201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050873012
172 https://doi.org/10.1007/s003820050201
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
175 https://doi.org/10.1038/35036559
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/415514a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038659743
178 https://doi.org/10.1038/415514a
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/416719a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
181 https://doi.org/10.1038/416719a
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/416723a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022821020
184 https://doi.org/10.1038/416723a
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
187 https://doi.org/10.1038/nature01092
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature01092a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044980256
190 https://doi.org/10.1038/nature01092a
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
193 schema:name Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
194 rdf:type schema:Organization
195 grid-institutes:grid.4991.5 schema:alternateName Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
196 schema:name Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...