An unusual isotope effect in a high-transition-temperature superconductor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-07

AUTHORS

G.-H. Gweon, T. Sasagawa, S.Y. Zhou, J. Graf, H. Takagi, D.-H. Lee, A. Lanzara

ABSTRACT

In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-T(c)) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in T(c) of optimally doped Bi2Sr2CaCu2O8+delta (Bi2212; ref. 1) upon oxygen isotope substitution (16O --> 18O leads to T(c) decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as 'incoherent peaks'. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other. More... »

PAGES

187

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02731

DOI

http://dx.doi.org/10.1038/nature02731

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044889711

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15241409


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gweon", 
        "givenName": "G.-H.", 
        "id": "sg:person.01360064410.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360064410.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan", 
            "CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasagawa", 
        "givenName": "T.", 
        "id": "sg:person.013677701261.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677701261.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "S.Y.", 
        "id": "sg:person.01364527022.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364527022.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graf", 
        "givenName": "J.", 
        "id": "sg:person.01316314457.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316314457.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan", 
            "CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan", 
            "RIKEN (The Institute of Physical and Chemical Research), Wako 351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takagi", 
        "givenName": "H.", 
        "id": "sg:person.013173521545.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
            "Department of Physics, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "D.-H.", 
        "id": "sg:person.014076746221.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076746221.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
            "Department of Physics, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lanzara", 
        "givenName": "A.", 
        "id": "sg:person.0734311141.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734311141.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jpcs.2003.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002783216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006885289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006885289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.017001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007903398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.017001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007903398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.117003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009985542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.117003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009985542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/11/48/103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010159524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01357502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010258862", 
          "https://doi.org/10.1007/bf01357502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01357502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010258862", 
          "https://doi.org/10.1007/bf01357502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35095012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010659756", 
          "https://doi.org/10.1038/35095012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35095012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010659756", 
          "https://doi.org/10.1038/35095012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/423398b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011864609", 
          "https://doi.org/10.1038/423398b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/423398b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011864609", 
          "https://doi.org/10.1038/423398b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385236a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015301905", 
          "https://doi.org/10.1038/385236a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.036406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021576483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.036406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021576483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022921632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022921632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35087518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025272248", 
          "https://doi.org/10.1038/35087518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35087518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025272248", 
          "https://doi.org/10.1038/35087518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028240875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028240875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90036-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029609788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90036-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029609788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371681a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029805526", 
          "https://doi.org/10.1038/371681a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(95)00258-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030155806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342480a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031971386", 
          "https://doi.org/10.1038/342480a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/423398a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038404515", 
          "https://doi.org/10.1038/423398a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/423398a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038404515", 
          "https://doi.org/10.1038/423398a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045185149", 
          "https://doi.org/10.1038/nature02347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045185149", 
          "https://doi.org/10.1038/nature02347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.177007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.177007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.10.4637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.10.4637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.4712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.4712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.054503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.054503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.157003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.157003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.250.4986.1390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814440981_0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088769549"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-07", 
    "datePublishedReg": "2004-07-01", 
    "description": "In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-T(c)) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in T(c) of optimally doped Bi2Sr2CaCu2O8+delta (Bi2212; ref. 1) upon oxygen isotope substitution (16O --> 18O leads to T(c) decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as 'incoherent peaks'. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02731", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6996", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "430"
      }
    ], 
    "name": "An unusual isotope effect in a high-transition-temperature superconductor", 
    "pagination": "187", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d5d2a9d949bfa6549f423be2e46b7bf855b87991ee22144e7b0a5d9b2f8f2e62"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15241409"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02731"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044889711"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02731", 
      "https://app.dimensions.ai/details/publication/pub.1044889711"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29182_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02731"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02731'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02731'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02731'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02731'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02731 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5f21ecb5f12c4fa194f5024d1eae1023
4 schema:citation sg:pub.10.1007/bf01357502
5 sg:pub.10.1038/342480a0
6 sg:pub.10.1038/35087518
7 sg:pub.10.1038/35095012
8 sg:pub.10.1038/371681a0
9 sg:pub.10.1038/385236a0
10 sg:pub.10.1038/423398a
11 sg:pub.10.1038/423398b
12 sg:pub.10.1038/nature02347
13 https://doi.org/10.1016/0022-3697(59)90036-8
14 https://doi.org/10.1016/0022-3697(95)00258-8
15 https://doi.org/10.1016/j.jpcs.2003.12.017
16 https://doi.org/10.1088/0953-8984/11/48/103
17 https://doi.org/10.1103/physrevb.10.4637
18 https://doi.org/10.1103/physrevb.44.4712
19 https://doi.org/10.1103/physrevb.67.054503
20 https://doi.org/10.1103/physrevlett.60.2089
21 https://doi.org/10.1103/physrevlett.76.3412
22 https://doi.org/10.1103/physrevlett.78.1771
23 https://doi.org/10.1103/physrevlett.79.3506
24 https://doi.org/10.1103/physrevlett.84.2925
25 https://doi.org/10.1103/physrevlett.85.2581
26 https://doi.org/10.1103/physrevlett.86.1070
27 https://doi.org/10.1103/physrevlett.87.177007
28 https://doi.org/10.1103/physrevlett.91.157003
29 https://doi.org/10.1103/physrevlett.93.017001
30 https://doi.org/10.1103/physrevlett.93.117003
31 https://doi.org/10.1103/physrevlett.94.036406
32 https://doi.org/10.1126/science.250.4986.1390
33 https://doi.org/10.1142/9789814440981_0004
34 schema:datePublished 2004-07
35 schema:datePublishedReg 2004-07-01
36 schema:description In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-T(c)) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in T(c) of optimally doped Bi2Sr2CaCu2O8+delta (Bi2212; ref. 1) upon oxygen isotope substitution (16O --> 18O leads to T(c) decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as 'incoherent peaks'. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N50993a1f01ed47aead28139df8fe76ae
41 Nd6d46b0c86df4f68822add8073324757
42 sg:journal.1018957
43 schema:name An unusual isotope effect in a high-transition-temperature superconductor
44 schema:pagination 187
45 schema:productId N08896eac92b24b66af56425b0c434f32
46 N3cc5e9128d2f4c7bbd1a97f86fa05559
47 N9b4a62e8ec704a3995900007ece82239
48 Nc53401b796f1408d80a9fda4291868da
49 Nd082e9180f90469daf8ebfd11a160977
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044889711
51 https://doi.org/10.1038/nature02731
52 schema:sdDatePublished 2019-04-11T11:50
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N839eff5d085140f8ae3411f71a15bb06
55 schema:url https://www.nature.com/articles/nature02731
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0542f0ea6be344f68e2e3de600919c10 rdf:first sg:person.014076746221.35
60 rdf:rest Ne8f6af3bd28a459bbb400f868941f40a
61 N08896eac92b24b66af56425b0c434f32 schema:name readcube_id
62 schema:value d5d2a9d949bfa6549f423be2e46b7bf855b87991ee22144e7b0a5d9b2f8f2e62
63 rdf:type schema:PropertyValue
64 N1b7277afb27745bab8980480a152456d rdf:first sg:person.01364527022.49
65 rdf:rest Na8215f458de0426ca00c0852bfecd828
66 N3cc5e9128d2f4c7bbd1a97f86fa05559 schema:name nlm_unique_id
67 schema:value 0410462
68 rdf:type schema:PropertyValue
69 N50993a1f01ed47aead28139df8fe76ae schema:volumeNumber 430
70 rdf:type schema:PublicationVolume
71 N5f21ecb5f12c4fa194f5024d1eae1023 rdf:first sg:person.01360064410.47
72 rdf:rest Na0d30322944d4fd5be1d3f617042285e
73 N839eff5d085140f8ae3411f71a15bb06 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N9b4a62e8ec704a3995900007ece82239 schema:name doi
76 schema:value 10.1038/nature02731
77 rdf:type schema:PropertyValue
78 Na0d30322944d4fd5be1d3f617042285e rdf:first sg:person.013677701261.59
79 rdf:rest N1b7277afb27745bab8980480a152456d
80 Na8215f458de0426ca00c0852bfecd828 rdf:first sg:person.01316314457.84
81 rdf:rest Nfacdc4805aa04711b8494ccbf3cd3df1
82 Nc53401b796f1408d80a9fda4291868da schema:name dimensions_id
83 schema:value pub.1044889711
84 rdf:type schema:PropertyValue
85 Nd082e9180f90469daf8ebfd11a160977 schema:name pubmed_id
86 schema:value 15241409
87 rdf:type schema:PropertyValue
88 Nd6d46b0c86df4f68822add8073324757 schema:issueNumber 6996
89 rdf:type schema:PublicationIssue
90 Ne8f6af3bd28a459bbb400f868941f40a rdf:first sg:person.0734311141.42
91 rdf:rest rdf:nil
92 Nfacdc4805aa04711b8494ccbf3cd3df1 rdf:first sg:person.013173521545.69
93 rdf:rest N0542f0ea6be344f68e2e3de600919c10
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
98 schema:name Materials Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1018957 schema:issn 0090-0028
101 1476-4687
102 schema:name Nature
103 rdf:type schema:Periodical
104 sg:person.01316314457.84 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
105 schema:familyName Graf
106 schema:givenName J.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316314457.84
108 rdf:type schema:Person
109 sg:person.013173521545.69 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
110 schema:familyName Takagi
111 schema:givenName H.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69
113 rdf:type schema:Person
114 sg:person.01360064410.47 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
115 schema:familyName Gweon
116 schema:givenName G.-H.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360064410.47
118 rdf:type schema:Person
119 sg:person.01364527022.49 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
120 schema:familyName Zhou
121 schema:givenName S.Y.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364527022.49
123 rdf:type schema:Person
124 sg:person.013677701261.59 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
125 schema:familyName Sasagawa
126 schema:givenName T.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677701261.59
128 rdf:type schema:Person
129 sg:person.014076746221.35 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
130 schema:familyName Lee
131 schema:givenName D.-H.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076746221.35
133 rdf:type schema:Person
134 sg:person.0734311141.42 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
135 schema:familyName Lanzara
136 schema:givenName A.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734311141.42
138 rdf:type schema:Person
139 sg:pub.10.1007/bf01357502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010258862
140 https://doi.org/10.1007/bf01357502
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/342480a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031971386
143 https://doi.org/10.1038/342480a0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/35087518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025272248
146 https://doi.org/10.1038/35087518
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/35095012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010659756
149 https://doi.org/10.1038/35095012
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/371681a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029805526
152 https://doi.org/10.1038/371681a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/385236a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015301905
155 https://doi.org/10.1038/385236a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/423398a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038404515
158 https://doi.org/10.1038/423398a
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/423398b schema:sameAs https://app.dimensions.ai/details/publication/pub.1011864609
161 https://doi.org/10.1038/423398b
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature02347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045185149
164 https://doi.org/10.1038/nature02347
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0022-3697(59)90036-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029609788
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0022-3697(95)00258-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030155806
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jpcs.2003.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002783216
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0953-8984/11/48/103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010159524
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.10.4637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060519110
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.44.4712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559563
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.67.054503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605665
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.60.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796962
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.76.3412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813082
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.78.1771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814823
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.79.3506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022921632
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.84.2925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821002
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.85.2581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028240875
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.86.1070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006885289
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.87.177007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052930376
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.91.157003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827357
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.93.017001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007903398
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.93.117003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009985542
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.94.036406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021576483
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.250.4986.1390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541160
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1142/9789814440981_0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088769549
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
209 schema:name Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
212 schema:name CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
213 Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
216 schema:name Department of Physics, University of California, Berkeley, California 94720, USA
217 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
220 schema:name CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
221 Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
222 RIKEN (The Institute of Physical and Chemical Research), Wako 351-0198, Japan
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...