Superconductivity in diamond View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-04

AUTHORS

E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, S. M. Stishov

ABSTRACT

Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions. More... »

PAGES

542

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02449

DOI

http://dx.doi.org/10.1038/nature02449

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021218342

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15057827


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ekimov", 
        "givenName": "E. A.", 
        "id": "sg:person.01130326404.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130326404.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sidorov", 
        "givenName": "V. A.", 
        "id": "sg:person.01262342431.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262342431.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "E. D.", 
        "id": "sg:person.014763025200.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763025200.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics. PN Lebedev, the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mel'nik", 
        "givenName": "N. N.", 
        "id": "sg:person.013660222136.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660222136.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Curro", 
        "givenName": "N. J.", 
        "id": "sg:person.0727703012.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727703012.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "J. D.", 
        "id": "sg:person.015434050204.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015434050204.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stishov", 
        "givenName": "S. M.", 
        "id": "sg:person.01030502343.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030502343.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0925-9635(01)00426-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001164218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002003747", 
          "https://doi.org/10.1038/nmat929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002003747", 
          "https://doi.org/10.1038/nmat929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-9635(96)00539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003774687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2000.0542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.2211540130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037524241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580966", 
          "https://doi.org/10.1007/s100510050897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057673344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1545152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057718911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.363856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057989744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/3/8/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058965629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.a511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.a511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.167.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.167.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.8.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.8.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.247003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.247003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1062286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.59.1541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063111592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04", 
    "datePublishedReg": "2004-04-01", 
    "description": "Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02449", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6982", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "428"
      }
    ], 
    "name": "Superconductivity in diamond", 
    "pagination": "542", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65185c432e10a785b6821c0d63eada5f754bb8bfe197634ed81f3b6610bf7235"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15057827"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02449"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021218342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02449", 
      "https://app.dimensions.ai/details/publication/pub.1021218342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71698_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02449"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02449'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02449'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02449'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02449'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      48 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02449 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nbb0e03a67a3e4b86ba0de7a75c73f251
4 schema:citation sg:pub.10.1007/s100510050897
5 sg:pub.10.1038/nmat929
6 https://doi.org/10.1002/pssa.2211540130
7 https://doi.org/10.1016/0925-9635(96)00539-0
8 https://doi.org/10.1016/s0925-9635(01)00426-5
9 https://doi.org/10.1063/1.111088
10 https://doi.org/10.1063/1.114529
11 https://doi.org/10.1063/1.1545152
12 https://doi.org/10.1063/1.363856
13 https://doi.org/10.1088/0022-3719/3/8/011
14 https://doi.org/10.1098/rsta.2000.0542
15 https://doi.org/10.1103/physrev.134.a511
16 https://doi.org/10.1103/physrev.147.295
17 https://doi.org/10.1103/physrev.167.331
18 https://doi.org/10.1103/physrevlett.74.1427
19 https://doi.org/10.1103/physrevlett.8.250
20 https://doi.org/10.1103/physrevlett.87.247003
21 https://doi.org/10.1126/science.1062286
22 https://doi.org/10.1143/jpsj.59.1541
23 schema:datePublished 2004-04
24 schema:datePublishedReg 2004-04-01
25 schema:description Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N5f5b61705c324d219734ab149dbe118c
30 Nb4efb712a56641248d60bb7999730376
31 sg:journal.1018957
32 schema:name Superconductivity in diamond
33 schema:pagination 542
34 schema:productId N0f89204d0ce74085839437976cf4fe03
35 N59f9293f5e434148adf274282829df1f
36 Naa8eac58d25641288d8f021c8af7e763
37 Nd424b67c63b94295b71e4f843cd9cc26
38 Nfe465b256d054b9187d0e1080c265cdc
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021218342
40 https://doi.org/10.1038/nature02449
41 schema:sdDatePublished 2019-04-11T12:59
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N30882618155b4a509eb532f90dc50cbc
44 schema:url https://www.nature.com/articles/nature02449
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0f89204d0ce74085839437976cf4fe03 schema:name dimensions_id
49 schema:value pub.1021218342
50 rdf:type schema:PropertyValue
51 N1648c057035545ce85f3ec1e8816fef0 rdf:first sg:person.013660222136.55
52 rdf:rest Nbdbf4be909ac4b159ef8ca96c89a5e81
53 N30882618155b4a509eb532f90dc50cbc schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N59f9293f5e434148adf274282829df1f schema:name doi
56 schema:value 10.1038/nature02449
57 rdf:type schema:PropertyValue
58 N5e1b5bf864d24a898f98bbea0272d2dd rdf:first sg:person.014763025200.59
59 rdf:rest N1648c057035545ce85f3ec1e8816fef0
60 N5f5b61705c324d219734ab149dbe118c schema:issueNumber 6982
61 rdf:type schema:PublicationIssue
62 N8e6a4000b8724c0ea980eadea3d439ec rdf:first sg:person.01262342431.24
63 rdf:rest N5e1b5bf864d24a898f98bbea0272d2dd
64 N94c84a23e36a4831b6fc0cf9ffeb32c5 rdf:first sg:person.015434050204.97
65 rdf:rest Nf742a4cd1f29415ba86d6fc499b75d28
66 Naa8eac58d25641288d8f021c8af7e763 schema:name nlm_unique_id
67 schema:value 0410462
68 rdf:type schema:PropertyValue
69 Nb4efb712a56641248d60bb7999730376 schema:volumeNumber 428
70 rdf:type schema:PublicationVolume
71 Nbb0e03a67a3e4b86ba0de7a75c73f251 rdf:first sg:person.01130326404.01
72 rdf:rest N8e6a4000b8724c0ea980eadea3d439ec
73 Nbdbf4be909ac4b159ef8ca96c89a5e81 rdf:first sg:person.0727703012.80
74 rdf:rest N94c84a23e36a4831b6fc0cf9ffeb32c5
75 Nd424b67c63b94295b71e4f843cd9cc26 schema:name readcube_id
76 schema:value 65185c432e10a785b6821c0d63eada5f754bb8bfe197634ed81f3b6610bf7235
77 rdf:type schema:PropertyValue
78 Nf742a4cd1f29415ba86d6fc499b75d28 rdf:first sg:person.01030502343.25
79 rdf:rest rdf:nil
80 Nfe465b256d054b9187d0e1080c265cdc schema:name pubmed_id
81 schema:value 15057827
82 rdf:type schema:PropertyValue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
87 schema:name Materials Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1018957 schema:issn 0090-0028
90 1476-4687
91 schema:name Nature
92 rdf:type schema:Periodical
93 sg:person.01030502343.25 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
94 schema:familyName Stishov
95 schema:givenName S. M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030502343.25
97 rdf:type schema:Person
98 sg:person.01130326404.01 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
99 schema:familyName Ekimov
100 schema:givenName E. A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130326404.01
102 rdf:type schema:Person
103 sg:person.01262342431.24 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
104 schema:familyName Sidorov
105 schema:givenName V. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262342431.24
107 rdf:type schema:Person
108 sg:person.013660222136.55 schema:affiliation https://www.grid.ac/institutes/grid.425806.d
109 schema:familyName Mel'nik
110 schema:givenName N. N.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660222136.55
112 rdf:type schema:Person
113 sg:person.014763025200.59 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
114 schema:familyName Bauer
115 schema:givenName E. D.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763025200.59
117 rdf:type schema:Person
118 sg:person.015434050204.97 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
119 schema:familyName Thompson
120 schema:givenName J. D.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015434050204.97
122 rdf:type schema:Person
123 sg:person.0727703012.80 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
124 schema:familyName Curro
125 schema:givenName N. J.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727703012.80
127 rdf:type schema:Person
128 sg:pub.10.1007/s100510050897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046580966
129 https://doi.org/10.1007/s100510050897
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nmat929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002003747
132 https://doi.org/10.1038/nmat929
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/pssa.2211540130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037524241
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0925-9635(96)00539-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003774687
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0925-9635(01)00426-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001164218
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.111088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658648
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.114529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057673344
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.1545152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057718911
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.363856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057989744
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/0022-3719/3/8/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058965629
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1098/rsta.2000.0542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251172
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrev.134.a511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428562
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrev.147.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433136
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrev.167.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437772
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.74.1427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810389
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.8.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816671
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.87.247003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824116
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.1062286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445192
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1143/jpsj.59.1541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063111592
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
169 schema:name Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.425806.d schema:alternateName Institute of Physics. PN Lebedev, the Russian Academy of Sciences
172 schema:name Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
175 schema:name Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...