Superconductivity in diamond View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-04

AUTHORS

E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, S. M. Stishov

ABSTRACT

Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions. More... »

PAGES

542

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02449

DOI

http://dx.doi.org/10.1038/nature02449

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021218342

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15057827


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ekimov", 
        "givenName": "E. A.", 
        "id": "sg:person.01130326404.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130326404.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sidorov", 
        "givenName": "V. A.", 
        "id": "sg:person.01262342431.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262342431.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "E. D.", 
        "id": "sg:person.014763025200.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763025200.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics. PN Lebedev, the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mel'nik", 
        "givenName": "N. N.", 
        "id": "sg:person.013660222136.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660222136.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Curro", 
        "givenName": "N. J.", 
        "id": "sg:person.0727703012.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727703012.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "J. D.", 
        "id": "sg:person.015434050204.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015434050204.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stishov", 
        "givenName": "S. M.", 
        "id": "sg:person.01030502343.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030502343.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0925-9635(01)00426-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001164218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002003747", 
          "https://doi.org/10.1038/nmat929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002003747", 
          "https://doi.org/10.1038/nmat929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-9635(96)00539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003774687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2000.0542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.2211540130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037524241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580966", 
          "https://doi.org/10.1007/s100510050897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057673344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1545152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057718911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.363856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057989744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/3/8/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058965629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.a511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.a511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.147.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.167.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.167.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.8.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.8.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.247003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.247003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1062286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.59.1541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063111592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04", 
    "datePublishedReg": "2004-04-01", 
    "description": "Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02449", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6982", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "428"
      }
    ], 
    "name": "Superconductivity in diamond", 
    "pagination": "542", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65185c432e10a785b6821c0d63eada5f754bb8bfe197634ed81f3b6610bf7235"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15057827"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02449"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021218342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02449", 
      "https://app.dimensions.ai/details/publication/pub.1021218342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71698_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02449"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02449'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02449'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02449'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02449'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      48 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02449 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na75a51ca148e4db7a46fc6bfef6cb314
4 schema:citation sg:pub.10.1007/s100510050897
5 sg:pub.10.1038/nmat929
6 https://doi.org/10.1002/pssa.2211540130
7 https://doi.org/10.1016/0925-9635(96)00539-0
8 https://doi.org/10.1016/s0925-9635(01)00426-5
9 https://doi.org/10.1063/1.111088
10 https://doi.org/10.1063/1.114529
11 https://doi.org/10.1063/1.1545152
12 https://doi.org/10.1063/1.363856
13 https://doi.org/10.1088/0022-3719/3/8/011
14 https://doi.org/10.1098/rsta.2000.0542
15 https://doi.org/10.1103/physrev.134.a511
16 https://doi.org/10.1103/physrev.147.295
17 https://doi.org/10.1103/physrev.167.331
18 https://doi.org/10.1103/physrevlett.74.1427
19 https://doi.org/10.1103/physrevlett.8.250
20 https://doi.org/10.1103/physrevlett.87.247003
21 https://doi.org/10.1126/science.1062286
22 https://doi.org/10.1143/jpsj.59.1541
23 schema:datePublished 2004-04
24 schema:datePublishedReg 2004-04-01
25 schema:description Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N0b17e0f3c15e4802a071b9edc9b6d986
30 N0f20bf528aec401cbf757d6646e6402f
31 sg:journal.1018957
32 schema:name Superconductivity in diamond
33 schema:pagination 542
34 schema:productId N0e947a52a6a04b93b2ad415c0c3531bc
35 N530e355caf9b46daa56f48763608e810
36 Na7f5890353c54300b8bcc96a2c504ef6
37 Nb214fd20d6ec4055b532c4d11959d252
38 Nebd5964b305f43d2964f55612d38bcee
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021218342
40 https://doi.org/10.1038/nature02449
41 schema:sdDatePublished 2019-04-11T12:59
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N606115f44d144215b09c412e7e6646f8
44 schema:url https://www.nature.com/articles/nature02449
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0b17e0f3c15e4802a071b9edc9b6d986 schema:issueNumber 6982
49 rdf:type schema:PublicationIssue
50 N0e947a52a6a04b93b2ad415c0c3531bc schema:name pubmed_id
51 schema:value 15057827
52 rdf:type schema:PropertyValue
53 N0f20bf528aec401cbf757d6646e6402f schema:volumeNumber 428
54 rdf:type schema:PublicationVolume
55 N1c9e7726699c4f14b463a23e095d9fb6 rdf:first sg:person.0727703012.80
56 rdf:rest N559a807b9eb84897920a3d9aabe48263
57 N530e355caf9b46daa56f48763608e810 schema:name nlm_unique_id
58 schema:value 0410462
59 rdf:type schema:PropertyValue
60 N559a807b9eb84897920a3d9aabe48263 rdf:first sg:person.015434050204.97
61 rdf:rest Ncd07263a051a4c28a41f576a4f81ebca
62 N5e2b20e9b65846d386a70da6ab711836 rdf:first sg:person.014763025200.59
63 rdf:rest Nceda0e7ef85346c7984fbb19b2b5ce54
64 N606115f44d144215b09c412e7e6646f8 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Na75a51ca148e4db7a46fc6bfef6cb314 rdf:first sg:person.01130326404.01
67 rdf:rest Nd09b255df1db408fa57456681e8a5081
68 Na7f5890353c54300b8bcc96a2c504ef6 schema:name doi
69 schema:value 10.1038/nature02449
70 rdf:type schema:PropertyValue
71 Nb214fd20d6ec4055b532c4d11959d252 schema:name dimensions_id
72 schema:value pub.1021218342
73 rdf:type schema:PropertyValue
74 Ncd07263a051a4c28a41f576a4f81ebca rdf:first sg:person.01030502343.25
75 rdf:rest rdf:nil
76 Nceda0e7ef85346c7984fbb19b2b5ce54 rdf:first sg:person.013660222136.55
77 rdf:rest N1c9e7726699c4f14b463a23e095d9fb6
78 Nd09b255df1db408fa57456681e8a5081 rdf:first sg:person.01262342431.24
79 rdf:rest N5e2b20e9b65846d386a70da6ab711836
80 Nebd5964b305f43d2964f55612d38bcee schema:name readcube_id
81 schema:value 65185c432e10a785b6821c0d63eada5f754bb8bfe197634ed81f3b6610bf7235
82 rdf:type schema:PropertyValue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
87 schema:name Materials Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1018957 schema:issn 0090-0028
90 1476-4687
91 schema:name Nature
92 rdf:type schema:Periodical
93 sg:person.01030502343.25 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
94 schema:familyName Stishov
95 schema:givenName S. M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030502343.25
97 rdf:type schema:Person
98 sg:person.01130326404.01 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
99 schema:familyName Ekimov
100 schema:givenName E. A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130326404.01
102 rdf:type schema:Person
103 sg:person.01262342431.24 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
104 schema:familyName Sidorov
105 schema:givenName V. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262342431.24
107 rdf:type schema:Person
108 sg:person.013660222136.55 schema:affiliation https://www.grid.ac/institutes/grid.425806.d
109 schema:familyName Mel'nik
110 schema:givenName N. N.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660222136.55
112 rdf:type schema:Person
113 sg:person.014763025200.59 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
114 schema:familyName Bauer
115 schema:givenName E. D.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763025200.59
117 rdf:type schema:Person
118 sg:person.015434050204.97 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
119 schema:familyName Thompson
120 schema:givenName J. D.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015434050204.97
122 rdf:type schema:Person
123 sg:person.0727703012.80 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
124 schema:familyName Curro
125 schema:givenName N. J.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727703012.80
127 rdf:type schema:Person
128 sg:pub.10.1007/s100510050897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046580966
129 https://doi.org/10.1007/s100510050897
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nmat929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002003747
132 https://doi.org/10.1038/nmat929
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/pssa.2211540130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037524241
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0925-9635(96)00539-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003774687
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0925-9635(01)00426-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001164218
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.111088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658648
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.114529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057673344
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.1545152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057718911
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.363856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057989744
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/0022-3719/3/8/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058965629
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1098/rsta.2000.0542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251172
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrev.134.a511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428562
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrev.147.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433136
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrev.167.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437772
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.74.1427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810389
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.8.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816671
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.87.247003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824116
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.1062286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445192
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1143/jpsj.59.1541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063111592
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
169 schema:name Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.425806.d schema:alternateName Institute of Physics. PN Lebedev, the Russian Academy of Sciences
172 schema:name Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
175 schema:name Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...