Current-induced domain-wall switching in a ferromagnetic semiconductor structure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-04

AUTHORS

M. Yamanouchi, D. Chiba, F. Matsukura, H. Ohno

ABSTRACT

Magnetic information storage relies on external magnetic fields to encode logical bits through magnetization reversal. But because the magnetic fields needed to operate ultradense storage devices are too high to generate, magnetization reversal by electrical currents is attracting much interest as a promising alternative encoding method. Indeed, spin-polarized currents can reverse the magnetization direction of nanometre-sized metallic structures through torque; however, the high current densities of 10(7)-10(8) A cm(-2) that are at present required exceed the threshold values tolerated by the metal interconnects of integrated circuits. Encoding magnetic information in metallic systems has also been achieved by manipulating the domain walls at the boundary between regions with different magnetization directions, but the approach again requires high current densities of about 10(7) A cm(-2). Here we demonstrate that, in a ferromagnetic semiconductor structure, magnetization reversal through domain-wall switching can be induced in the absence of a magnetic field using current pulses with densities below 10(5) A cm(-2). The slow switching speed and low ferromagnetic transition temperature of our current system are impractical. But provided these problems can be addressed, magnetic reversal through electric pulses with reduced current densities could provide a route to magnetic information storage applications. More... »

PAGES

539

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02441

DOI

http://dx.doi.org/10.1038/nature02441

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032107810

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15057826


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamanouchi", 
        "givenName": "M.", 
        "id": "sg:person.0656350763.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656350763.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiba", 
        "givenName": "D.", 
        "id": "sg:person.01203703171.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203703171.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan", 
            "ERATO Semiconductor Spintronics Project, Japan Science and Technology Agency, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsukura", 
        "givenName": "F.", 
        "id": "sg:person.01252016371.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252016371.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan", 
            "ERATO Semiconductor Spintronics Project, Japan Science and Technology Agency, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohno", 
        "givenName": "H.", 
        "id": "sg:person.012111370661.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111370661.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-3697(74)80104-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001158810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1594841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008497141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.195205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.195205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10112-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047358232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5379.951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048702032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.107201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050106081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.107201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050106081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/45509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052328360", 
          "https://doi.org/10.1038/45509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/45509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052328360", 
          "https://doi.org/10.1038/45509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1330562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1461065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057708949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1517164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057715337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1571666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057721570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1578165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057722276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1586996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057723143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057938154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.334524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057939381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.351045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057965046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.357250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057977129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.207202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.207202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.908674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061119030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1086608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5455.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568262"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04", 
    "datePublishedReg": "2004-04-01", 
    "description": "Magnetic information storage relies on external magnetic fields to encode logical bits through magnetization reversal. But because the magnetic fields needed to operate ultradense storage devices are too high to generate, magnetization reversal by electrical currents is attracting much interest as a promising alternative encoding method. Indeed, spin-polarized currents can reverse the magnetization direction of nanometre-sized metallic structures through torque; however, the high current densities of 10(7)-10(8) A cm(-2) that are at present required exceed the threshold values tolerated by the metal interconnects of integrated circuits. Encoding magnetic information in metallic systems has also been achieved by manipulating the domain walls at the boundary between regions with different magnetization directions, but the approach again requires high current densities of about 10(7) A cm(-2). Here we demonstrate that, in a ferromagnetic semiconductor structure, magnetization reversal through domain-wall switching can be induced in the absence of a magnetic field using current pulses with densities below 10(5) A cm(-2). The slow switching speed and low ferromagnetic transition temperature of our current system are impractical. But provided these problems can be addressed, magnetic reversal through electric pulses with reduced current densities could provide a route to magnetic information storage applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02441", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6982", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "428"
      }
    ], 
    "name": "Current-induced domain-wall switching in a ferromagnetic semiconductor structure", 
    "pagination": "539", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "98f49fdff1ab03e2c55793ada49297269b00b9641fe8d9e35f2f81d1c428e710"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15057826"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02441"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032107810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02441", 
      "https://app.dimensions.ai/details/publication/pub.1032107810"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71686_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02441"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02441'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02441'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02441'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02441'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02441 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9c06b8e1524945f1b724487647d69bd9
4 schema:citation sg:pub.10.1038/35050040
5 sg:pub.10.1038/45509
6 https://doi.org/10.1016/0304-8853(96)00062-5
7 https://doi.org/10.1016/s0022-3697(74)80104-6
8 https://doi.org/10.1063/1.1330562
9 https://doi.org/10.1063/1.1461065
10 https://doi.org/10.1063/1.1517164
11 https://doi.org/10.1063/1.1571666
12 https://doi.org/10.1063/1.1578165
13 https://doi.org/10.1063/1.1586996
14 https://doi.org/10.1063/1.1594841
15 https://doi.org/10.1063/1.333530
16 https://doi.org/10.1063/1.334524
17 https://doi.org/10.1063/1.351045
18 https://doi.org/10.1063/1.357250
19 https://doi.org/10.1103/physrevb.54.9353
20 https://doi.org/10.1103/physrevb.63.195205
21 https://doi.org/10.1103/physrevlett.80.4281
22 https://doi.org/10.1103/physrevlett.90.107201
23 https://doi.org/10.1103/physrevlett.90.207202
24 https://doi.org/10.1103/physrevlett.92.077205
25 https://doi.org/10.1103/physrevlett.92.086601
26 https://doi.org/10.1109/20.908674
27 https://doi.org/10.1126/science.1086608
28 https://doi.org/10.1126/science.281.5379.951
29 https://doi.org/10.1126/science.287.5455.1019
30 https://doi.org/10.1209/epl/i2003-10112-5
31 schema:datePublished 2004-04
32 schema:datePublishedReg 2004-04-01
33 schema:description Magnetic information storage relies on external magnetic fields to encode logical bits through magnetization reversal. But because the magnetic fields needed to operate ultradense storage devices are too high to generate, magnetization reversal by electrical currents is attracting much interest as a promising alternative encoding method. Indeed, spin-polarized currents can reverse the magnetization direction of nanometre-sized metallic structures through torque; however, the high current densities of 10(7)-10(8) A cm(-2) that are at present required exceed the threshold values tolerated by the metal interconnects of integrated circuits. Encoding magnetic information in metallic systems has also been achieved by manipulating the domain walls at the boundary between regions with different magnetization directions, but the approach again requires high current densities of about 10(7) A cm(-2). Here we demonstrate that, in a ferromagnetic semiconductor structure, magnetization reversal through domain-wall switching can be induced in the absence of a magnetic field using current pulses with densities below 10(5) A cm(-2). The slow switching speed and low ferromagnetic transition temperature of our current system are impractical. But provided these problems can be addressed, magnetic reversal through electric pulses with reduced current densities could provide a route to magnetic information storage applications.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N4a831aa3dbd045ce93bc8cc65f4337b7
38 N9d9fa6f0c7324d4f8e788483df24380c
39 sg:journal.1018957
40 schema:name Current-induced domain-wall switching in a ferromagnetic semiconductor structure
41 schema:pagination 539
42 schema:productId N3db1b453d5c442a8a9749048e5828b29
43 N53585800555e42ad9b4e852ee7f56c29
44 N7a942df441304220a12470a8d773e1c5
45 Na9cf7aeeb97944eab69f65c4d1be6e99
46 Nae4192120e2f434da2f65c95c3157ae9
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107810
48 https://doi.org/10.1038/nature02441
49 schema:sdDatePublished 2019-04-11T12:58
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N1f744338630f457dbb5e2285b615da4a
52 schema:url https://www.nature.com/articles/nature02441
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1f744338630f457dbb5e2285b615da4a schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N36c3f5cadbea40a39ca3773efdb02acf rdf:first sg:person.012111370661.83
59 rdf:rest rdf:nil
60 N3db1b453d5c442a8a9749048e5828b29 schema:name doi
61 schema:value 10.1038/nature02441
62 rdf:type schema:PropertyValue
63 N42e17c3386dd4f79a8cfc7bd87714d08 rdf:first sg:person.01252016371.47
64 rdf:rest N36c3f5cadbea40a39ca3773efdb02acf
65 N4a831aa3dbd045ce93bc8cc65f4337b7 schema:issueNumber 6982
66 rdf:type schema:PublicationIssue
67 N53585800555e42ad9b4e852ee7f56c29 schema:name readcube_id
68 schema:value 98f49fdff1ab03e2c55793ada49297269b00b9641fe8d9e35f2f81d1c428e710
69 rdf:type schema:PropertyValue
70 N7a942df441304220a12470a8d773e1c5 schema:name nlm_unique_id
71 schema:value 0410462
72 rdf:type schema:PropertyValue
73 N9c06b8e1524945f1b724487647d69bd9 rdf:first sg:person.0656350763.43
74 rdf:rest N9c563356af0e4f1cbab688505e81452f
75 N9c563356af0e4f1cbab688505e81452f rdf:first sg:person.01203703171.12
76 rdf:rest N42e17c3386dd4f79a8cfc7bd87714d08
77 N9d9fa6f0c7324d4f8e788483df24380c schema:volumeNumber 428
78 rdf:type schema:PublicationVolume
79 Na9cf7aeeb97944eab69f65c4d1be6e99 schema:name pubmed_id
80 schema:value 15057826
81 rdf:type schema:PropertyValue
82 Nae4192120e2f434da2f65c95c3157ae9 schema:name dimensions_id
83 schema:value pub.1032107810
84 rdf:type schema:PropertyValue
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
89 schema:name Materials Engineering
90 rdf:type schema:DefinedTerm
91 sg:journal.1018957 schema:issn 0090-0028
92 1476-4687
93 schema:name Nature
94 rdf:type schema:Periodical
95 sg:person.01203703171.12 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
96 schema:familyName Chiba
97 schema:givenName D.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203703171.12
99 rdf:type schema:Person
100 sg:person.012111370661.83 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
101 schema:familyName Ohno
102 schema:givenName H.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111370661.83
104 rdf:type schema:Person
105 sg:person.01252016371.47 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
106 schema:familyName Matsukura
107 schema:givenName F.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252016371.47
109 rdf:type schema:Person
110 sg:person.0656350763.43 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
111 schema:familyName Yamanouchi
112 schema:givenName M.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656350763.43
114 rdf:type schema:Person
115 sg:pub.10.1038/35050040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006678613
116 https://doi.org/10.1038/35050040
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/45509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052328360
119 https://doi.org/10.1038/45509
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0022-3697(74)80104-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001158810
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.1330562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695558
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.1461065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057708949
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.1517164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057715337
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.1571666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057721570
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1578165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722276
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.1586996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057723143
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.1594841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008497141
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.333530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057938154
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.334524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057939381
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.351045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057965046
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.357250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057977129
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.63.195205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059441
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.80.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817457
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.90.107201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050106081
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.90.207202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826751
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.92.077205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052656212
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.92.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047328087
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/20.908674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061119030
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.1086608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448308
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.281.5379.951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048702032
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.287.5455.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568262
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1209/epl/i2003-10112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047358232
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
172 schema:name ERATO Semiconductor Spintronics Project, Japan Science and Technology Agency, Japan
173 Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
176 schema:name Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...