A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

Ansheng Liu, Richard Jones, Ling Liao, Dean Samara-Rubio, Doron Rubin, Oded Cohen, Remus Nicolaescu, Mario Paniccia

ABSTRACT

Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III-V semiconductor compounds and/or electro-optic materials such as lithium niobate. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only approximately 20 MHz (refs 10, 11), although it has been predicted theoretically that a approximately 1-GHz modulation frequency might be achievable in some device structures. Here we describe an approach based on a metal-oxide-semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible. More... »

PAGES

615

Journal

TITLE

Nature

ISSUE

6975

VOLUME

427

Author Affiliations

Related Patents

  • Ultrafast Ge/Si Resonator-Based Modulators For Optical Data Communications In Silicon Photonics
  • Optical Routing And Transport Acceleration (Orta)
  • Bonding Interface Layer
  • Photoelectric Device Using Pn Diode And Silicon Integrated Circuit (Ic) Including The Photoelectric Device
  • Optical Functional Device And Fabrication Process Of The Same
  • Light Emitting Slot-Waveguide Device
  • Optical Coupling To Ic Chip
  • Photonic Blood Typing
  • Optical Device Including Gate Insulating Layer Having Edge Effect
  • Optical Device Having Strained Buried Channel
  • Pedigrees For Quantum Cryptography
  • Abrupt Metal-Insulator Transition Device With Parallel Mit Material Layers
  • Electro-Optic Modulation
  • Optical Phase Modulation Element And Optical Modulator Using The Same
  • Optical Modulator Utilizing Wafer Bonding Technology
  • Electro-Optical Modulator Structure
  • Electro-Optical Modulator
  • Bonded Thin-Film Structures For Optical Modulators And Methods Of Manufacture
  • Optical Gyro With Free Space Resonator And Method For Sensing Inertial Rotation Rate
  • Optical Phase Modulation Element And Optical Modulator Using The Same
  • Electro-Optic Modulator
  • Silicon-Compatible Surface Plasmon Optical Elements
  • Integrated Ldmos Devices For Silicon Photonics
  • Light Emitters Using Nanotubes And Methods Of Making Same
  • Optical Device Including Gate Insulator With Modulated Thickness
  • Optical Waveguide Resonators
  • Electro-Optical Waveguide Apparatuses And Methods Thereof
  • Resistive Elements Using Carbon Nanotubes
  • Multimode Interference Coupler For Use With Slot Photonic Crystal Waveguides
  • Electro-Optical Modulators With Folded Gate Layers
  • Junction Field Effect Transistor Geometry For Optical Modulators
  • High Speed Optical Intensity Modulator
  • High Speed Optical Phase Modulator
  • Semiconductor High-Speed Integrated Electro-Optic Devices And Methods
  • Silicon Optoelectronic Device
  • Silicon Optoelectronic Device
  • Junction Field Effect Transistor Geometry For Optical Modulators
  • Electrooptic Silicon Modulator With Enhanced Bandwidth
  • Monolithically Integrated Silicon And Iii-V Electronics
  • Photonic Blood Typing
  • Silicon-Insulator-Silicon Thin-Film Structures For Optical Modulators And Methods Of Manufacture
  • Optical Transistor
  • Low Loss Contact Structures For Silicon Based Optical Modulators And Methods Of Manufacture
  • Optical Modulator And Methods Of Making And Using Optical Modulator
  • System And Method For Uniform Multi-Plane Silicon Oxide Layer Formation For Optical Applications
  • Hybrid Silicon-On-Insulator Waveguide Devices
  • Method And Apparatus For Optically Outputting Information From A Semiconductor Device
  • Semiconductor Integrated Circuits Including Optoelectronic Device For Changing Optical Phase
  • Beam Generation And Steering With Integrated Optical Circuits For Light Detection And Ranging
  • Electro-Optical Modulator Structure
  • Semiconductor Light-Emitting Structure And Graded-Composition Substrate Providing Yellow-Green Light Emission
  • Silicon Optical Device
  • Light Emitting Semiconductor Diode
  • Interdigitated Optical Modulator
  • Hierarchical Films Having Ultra Low Fouling And High Recognition Element Loading Properties
  • Electro-Optical Modulator Using Waveguides With Overlapping Ridges
  • Communication Methods, Methods Of Forming An Interconnect, Signal Interconnects, Integrated Circuit Structures, Circuits, And Data Apparatuses
  • High Speed Optical Phase Modulator
  • Electro-Optical Modulator With Curving Resonator
  • High Speed Semiconductor Waveguide Phase-Shifter
  • Electro-Optic Device
  • Interdigitated Optical Modulator
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature02310

    DOI

    http://dx.doi.org/10.1038/nature02310

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039714002

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/14961115


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Intel (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419318.6", 
              "name": [
                "Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Ansheng", 
            "id": "sg:person.012217244134.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217244134.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Intel (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419318.6", 
              "name": [
                "Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jones", 
            "givenName": "Richard", 
            "id": "sg:person.013301577517.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301577517.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Intel (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419318.6", 
              "name": [
                "Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Ling", 
            "id": "sg:person.0611602052.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611602052.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Intel (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419318.6", 
              "name": [
                "Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Samara-Rubio", 
            "givenName": "Dean", 
            "id": "sg:person.016531717755.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016531717755.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Intel Corporation, S. B. I. Park Har Hotzvim, Jerusalem, 91031, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubin", 
            "givenName": "Doron", 
            "id": "sg:person.013727420505.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013727420505.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Intel Corporation, S. B. I. Park Har Hotzvim, Jerusalem, 91031, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cohen", 
            "givenName": "Oded", 
            "id": "sg:person.014004345575.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014004345575.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Intel (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419318.6", 
              "name": [
                "Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nicolaescu", 
            "givenName": "Remus", 
            "id": "sg:person.012202741105.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202741105.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Intel (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419318.6", 
              "name": [
                "Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paniccia", 
            "givenName": "Mario", 
            "id": "sg:person.0646052636.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646052636.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11664-000-0122-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001091190", 
              "https://doi.org/10.1007/s11664-000-0122-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11664-000-0122-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001091190", 
              "https://doi.org/10.1007/s11664-000-0122-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.476666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021777657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.937193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044277783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:19950328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056781917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:19980745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056786820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:20030136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056792986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2944.826874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061145880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.248958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.371968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/50.301809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061181296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/50.536970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061182354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/50.557567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061182559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.205632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061207630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.47033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061208997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.475781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061209110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.53255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061209587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.849076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061211951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.853502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061211991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jlt.2003.808608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061282119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jqe.1986.1073057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061305410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jqe.1987.1073206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061305545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-ed.1983.21257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061462971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1364698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062166269"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-02", 
        "datePublishedReg": "2004-02-01", 
        "description": "Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III-V semiconductor compounds and/or electro-optic materials such as lithium niobate. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only approximately 20 MHz (refs 10, 11), although it has been predicted theoretically that a approximately 1-GHz modulation frequency might be achievable in some device structures. Here we describe an approach based on a metal-oxide-semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature02310", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6975", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "427"
          }
        ], 
        "name": "A high-speed silicon optical modulator based on a metal\u2013oxide\u2013semiconductor capacitor", 
        "pagination": "615", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bd2e141c81771bc5b9faf656d1ab0b860ecbe286dc2875c86d521f4f6fa70fd1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "14961115"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature02310"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039714002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature02310", 
          "https://app.dimensions.ai/details/publication/pub.1039714002"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature02310"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02310'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02310'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02310'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02310'


     

    This table displays all metadata directly associated to this object as RDF triples.

    192 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature02310 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nc66464be03554b17a9ff1c590c81580b
    4 schema:citation sg:pub.10.1007/s11664-000-0122-4
    5 https://doi.org/10.1049/el:19950328
    6 https://doi.org/10.1049/el:19980745
    7 https://doi.org/10.1049/el:20030136
    8 https://doi.org/10.1109/2944.826874
    9 https://doi.org/10.1109/5.248958
    10 https://doi.org/10.1109/5.371968
    11 https://doi.org/10.1109/50.301809
    12 https://doi.org/10.1109/50.536970
    13 https://doi.org/10.1109/50.557567
    14 https://doi.org/10.1109/68.205632
    15 https://doi.org/10.1109/68.47033
    16 https://doi.org/10.1109/68.475781
    17 https://doi.org/10.1109/68.53255
    18 https://doi.org/10.1109/68.849076
    19 https://doi.org/10.1109/68.853502
    20 https://doi.org/10.1109/jlt.2003.808608
    21 https://doi.org/10.1109/jqe.1986.1073057
    22 https://doi.org/10.1109/jqe.1987.1073206
    23 https://doi.org/10.1109/t-ed.1983.21257
    24 https://doi.org/10.1116/1.1364698
    25 https://doi.org/10.1117/12.476666
    26 https://doi.org/10.1117/12.937193
    27 schema:datePublished 2004-02
    28 schema:datePublishedReg 2004-02-01
    29 schema:description Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III-V semiconductor compounds and/or electro-optic materials such as lithium niobate. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only approximately 20 MHz (refs 10, 11), although it has been predicted theoretically that a approximately 1-GHz modulation frequency might be achievable in some device structures. Here we describe an approach based on a metal-oxide-semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N2190363b7a2c423da8adad64226ac178
    34 Nc6a52f32ee2648a3ae2004c8b58de73e
    35 sg:journal.1018957
    36 schema:name A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor
    37 schema:pagination 615
    38 schema:productId N122850303a0a41edada7bcbf06b7b126
    39 N36008bb7738b45fdbc553a667661341f
    40 N41db0d3b89aa4e89bb2a95cb874c392d
    41 N64a38b5771f14f11a783d37e183372f2
    42 Nbe396daa316b44bcb621335400ecdcc9
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039714002
    44 https://doi.org/10.1038/nature02310
    45 schema:sdDatePublished 2019-04-11T12:24
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N457d0f27b39643acbe1fe6eb3ccbf4c2
    48 schema:url https://www.nature.com/articles/nature02310
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0e7e10c0386942cc925157f16a8f43a7 rdf:first sg:person.0646052636.12
    53 rdf:rest rdf:nil
    54 N122850303a0a41edada7bcbf06b7b126 schema:name dimensions_id
    55 schema:value pub.1039714002
    56 rdf:type schema:PropertyValue
    57 N2190363b7a2c423da8adad64226ac178 schema:volumeNumber 427
    58 rdf:type schema:PublicationVolume
    59 N22501cfc69ef45bfb37d59e8d4a4c435 rdf:first sg:person.012202741105.23
    60 rdf:rest N0e7e10c0386942cc925157f16a8f43a7
    61 N22f73d5115744f71b3a31762f3a3eef6 rdf:first sg:person.013727420505.35
    62 rdf:rest N6344653230b94e6fbb0598579b1a226c
    63 N25d3236f48954f4a9060a8d345820470 schema:name Intel Corporation, S. B. I. Park Har Hotzvim, Jerusalem, 91031, Israel
    64 rdf:type schema:Organization
    65 N36008bb7738b45fdbc553a667661341f schema:name readcube_id
    66 schema:value bd2e141c81771bc5b9faf656d1ab0b860ecbe286dc2875c86d521f4f6fa70fd1
    67 rdf:type schema:PropertyValue
    68 N41db0d3b89aa4e89bb2a95cb874c392d schema:name pubmed_id
    69 schema:value 14961115
    70 rdf:type schema:PropertyValue
    71 N457d0f27b39643acbe1fe6eb3ccbf4c2 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N6344653230b94e6fbb0598579b1a226c rdf:first sg:person.014004345575.86
    74 rdf:rest N22501cfc69ef45bfb37d59e8d4a4c435
    75 N64a38b5771f14f11a783d37e183372f2 schema:name nlm_unique_id
    76 schema:value 0410462
    77 rdf:type schema:PropertyValue
    78 N683b9abb8f0140c4a08076f429d60a74 schema:name Intel Corporation, S. B. I. Park Har Hotzvim, Jerusalem, 91031, Israel
    79 rdf:type schema:Organization
    80 Nb29009e18aaa43a68368b5b19868445b rdf:first sg:person.0611602052.79
    81 rdf:rest Nfe748fa1be1e4a92a9bfd942c29b8fa8
    82 Nbe396daa316b44bcb621335400ecdcc9 schema:name doi
    83 schema:value 10.1038/nature02310
    84 rdf:type schema:PropertyValue
    85 Nc66464be03554b17a9ff1c590c81580b rdf:first sg:person.012217244134.36
    86 rdf:rest Ncdada134a85d4c86a82089f4b4a3c6c1
    87 Nc6a52f32ee2648a3ae2004c8b58de73e schema:issueNumber 6975
    88 rdf:type schema:PublicationIssue
    89 Ncdada134a85d4c86a82089f4b4a3c6c1 rdf:first sg:person.013301577517.85
    90 rdf:rest Nb29009e18aaa43a68368b5b19868445b
    91 Nfe748fa1be1e4a92a9bfd942c29b8fa8 rdf:first sg:person.016531717755.19
    92 rdf:rest N22f73d5115744f71b3a31762f3a3eef6
    93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Engineering
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Materials Engineering
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1018957 schema:issn 0090-0028
    100 1476-4687
    101 schema:name Nature
    102 rdf:type schema:Periodical
    103 sg:person.012202741105.23 schema:affiliation https://www.grid.ac/institutes/grid.419318.6
    104 schema:familyName Nicolaescu
    105 schema:givenName Remus
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202741105.23
    107 rdf:type schema:Person
    108 sg:person.012217244134.36 schema:affiliation https://www.grid.ac/institutes/grid.419318.6
    109 schema:familyName Liu
    110 schema:givenName Ansheng
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217244134.36
    112 rdf:type schema:Person
    113 sg:person.013301577517.85 schema:affiliation https://www.grid.ac/institutes/grid.419318.6
    114 schema:familyName Jones
    115 schema:givenName Richard
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301577517.85
    117 rdf:type schema:Person
    118 sg:person.013727420505.35 schema:affiliation N25d3236f48954f4a9060a8d345820470
    119 schema:familyName Rubin
    120 schema:givenName Doron
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013727420505.35
    122 rdf:type schema:Person
    123 sg:person.014004345575.86 schema:affiliation N683b9abb8f0140c4a08076f429d60a74
    124 schema:familyName Cohen
    125 schema:givenName Oded
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014004345575.86
    127 rdf:type schema:Person
    128 sg:person.016531717755.19 schema:affiliation https://www.grid.ac/institutes/grid.419318.6
    129 schema:familyName Samara-Rubio
    130 schema:givenName Dean
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016531717755.19
    132 rdf:type schema:Person
    133 sg:person.0611602052.79 schema:affiliation https://www.grid.ac/institutes/grid.419318.6
    134 schema:familyName Liao
    135 schema:givenName Ling
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611602052.79
    137 rdf:type schema:Person
    138 sg:person.0646052636.12 schema:affiliation https://www.grid.ac/institutes/grid.419318.6
    139 schema:familyName Paniccia
    140 schema:givenName Mario
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646052636.12
    142 rdf:type schema:Person
    143 sg:pub.10.1007/s11664-000-0122-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001091190
    144 https://doi.org/10.1007/s11664-000-0122-4
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1049/el:19950328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056781917
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1049/el:19980745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056786820
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1049/el:20030136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056792986
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/2944.826874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061145880
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/5.248958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179109
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/5.371968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179346
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/50.301809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061181296
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/50.536970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061182354
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/50.557567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061182559
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/68.205632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061207630
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/68.47033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061208997
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/68.475781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061209110
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/68.53255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061209587
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/68.849076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061211951
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/68.853502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061211991
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/jlt.2003.808608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061282119
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/jqe.1986.1073057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305410
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/jqe.1987.1073206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305545
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/t-ed.1983.21257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061462971
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1116/1.1364698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062166269
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1117/12.476666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021777657
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1117/12.937193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044277783
    189 rdf:type schema:CreativeWork
    190 https://www.grid.ac/institutes/grid.419318.6 schema:alternateName Intel (United States)
    191 schema:name Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA
    192 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...