Coherent spin manipulation without magnetic fields in strained semiconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-01

AUTHORS

Y. Kato, R. C. Myers, A. C. Gossard, D. D. Awschalom

ABSTRACT

A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin-orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing and spintronics, forming the basis of various device proposals. For example, the concept of spin field-effect transistors is based on spin precession due to the spin-orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to approximately 30 MHz. More... »

PAGES

50

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02202

DOI

http://dx.doi.org/10.1038/nature02202

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039260956

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14702080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Y.", 
        "id": "sg:person.015033247531.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033247531.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myers", 
        "givenName": "R. C.", 
        "id": "sg:person.01256324271.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256324271.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gossard", 
        "givenName": "A. C.", 
        "id": "sg:person.0772322701.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772322701.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awschalom", 
        "givenName": "D. D.", 
        "id": "sg:person.01024231643.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024231643.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.91.126405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004157043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.126405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004157043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005015903", 
          "https://doi.org/10.1007/978-3-662-05003-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005015903", 
          "https://doi.org/10.1007/978-3-662-05003-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008495700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008495700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.3912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021347992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.3912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021347992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/414619a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027686968", 
          "https://doi.org/10.1038/414619a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/414619a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027686968", 
          "https://doi.org/10.1038/414619a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030336001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030336001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.102730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057650306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1347023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057697312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.371872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058006273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/17/33/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058961842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.7595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.7595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.7685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.7685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.8278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.8278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.7574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.7574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.15902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.15902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1986.1073165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061305510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1080880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447797"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin-orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing and spintronics, forming the basis of various device proposals. For example, the concept of spin field-effect transistors is based on spin precession due to the spin-orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to approximately 30 MHz.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02202", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6969", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "427"
      }
    ], 
    "name": "Coherent spin manipulation without magnetic fields in strained semiconductors", 
    "pagination": "50", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb049d705c5aeb10be7472a2de1e458927bc6b068bcf3cc8fa31d1b99f94f539"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14702080"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02202"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039260956"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02202", 
      "https://app.dimensions.ai/details/publication/pub.1039260956"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87079_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02202"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02202'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02202'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02202'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02202'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02202 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N3f314ce40ed44b4e9a19ff52a00e9eb8
4 schema:citation sg:pub.10.1007/978-3-662-05003-3
5 sg:pub.10.1038/16420
6 sg:pub.10.1038/414619a
7 https://doi.org/10.1063/1.102730
8 https://doi.org/10.1063/1.1347023
9 https://doi.org/10.1063/1.371872
10 https://doi.org/10.1088/0022-3719/17/33/015
11 https://doi.org/10.1103/physrev.100.580
12 https://doi.org/10.1103/physreva.57.120
13 https://doi.org/10.1103/physrevb.38.7595
14 https://doi.org/10.1103/physrevb.41.7685
15 https://doi.org/10.1103/physrevb.41.8278
16 https://doi.org/10.1103/physrevb.53.3912
17 https://doi.org/10.1103/physrevb.56.7574
18 https://doi.org/10.1103/physrevb.59.15902
19 https://doi.org/10.1103/physrevlett.60.728
20 https://doi.org/10.1103/physrevlett.68.106
21 https://doi.org/10.1103/physrevlett.69.848
22 https://doi.org/10.1103/physrevlett.78.1335
23 https://doi.org/10.1103/physrevlett.80.4313
24 https://doi.org/10.1103/physrevlett.84.4220
25 https://doi.org/10.1103/physrevlett.88.126601
26 https://doi.org/10.1103/physrevlett.90.146801
27 https://doi.org/10.1103/physrevlett.91.126405
28 https://doi.org/10.1109/jqe.1986.1073165
29 https://doi.org/10.1126/science.1061169
30 https://doi.org/10.1126/science.1065389
31 https://doi.org/10.1126/science.1080880
32 schema:datePublished 2004-01
33 schema:datePublishedReg 2004-01-01
34 schema:description A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin-orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing and spintronics, forming the basis of various device proposals. For example, the concept of spin field-effect transistors is based on spin precession due to the spin-orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to approximately 30 MHz.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nce3513aac34c44e5b59d9c5d6401e9af
39 Nf732288fde364de79370ff49de338d55
40 sg:journal.1018957
41 schema:name Coherent spin manipulation without magnetic fields in strained semiconductors
42 schema:pagination 50
43 schema:productId N261379dfad3d43cabd20e5587b6ad819
44 N4e503c9b15f849cfa9221510163b4750
45 N583ff1d4936d4fe281000b1ff9fe29d9
46 N73aad2e1527b446b9ef1c9b8a8690544
47 N9f9f6ae74afe4cf3a8068744d5ac150f
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039260956
49 https://doi.org/10.1038/nature02202
50 schema:sdDatePublished 2019-04-11T12:21
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Neabd29cb9ddb4b9c9375d6666e982629
53 schema:url https://www.nature.com/articles/nature02202
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N261379dfad3d43cabd20e5587b6ad819 schema:name pubmed_id
58 schema:value 14702080
59 rdf:type schema:PropertyValue
60 N3f314ce40ed44b4e9a19ff52a00e9eb8 rdf:first sg:person.015033247531.51
61 rdf:rest Ne04436aa7f394c699615f84fcf8793fb
62 N4896c158a36048d9ac2a017a2d09ea02 rdf:first sg:person.0772322701.64
63 rdf:rest Ne3c5735ddde7430b9d58ba9bc68e71a8
64 N4e503c9b15f849cfa9221510163b4750 schema:name readcube_id
65 schema:value bb049d705c5aeb10be7472a2de1e458927bc6b068bcf3cc8fa31d1b99f94f539
66 rdf:type schema:PropertyValue
67 N583ff1d4936d4fe281000b1ff9fe29d9 schema:name nlm_unique_id
68 schema:value 0410462
69 rdf:type schema:PropertyValue
70 N73aad2e1527b446b9ef1c9b8a8690544 schema:name dimensions_id
71 schema:value pub.1039260956
72 rdf:type schema:PropertyValue
73 N9f9f6ae74afe4cf3a8068744d5ac150f schema:name doi
74 schema:value 10.1038/nature02202
75 rdf:type schema:PropertyValue
76 Nce3513aac34c44e5b59d9c5d6401e9af schema:issueNumber 6969
77 rdf:type schema:PublicationIssue
78 Ne04436aa7f394c699615f84fcf8793fb rdf:first sg:person.01256324271.55
79 rdf:rest N4896c158a36048d9ac2a017a2d09ea02
80 Ne3c5735ddde7430b9d58ba9bc68e71a8 rdf:first sg:person.01024231643.99
81 rdf:rest rdf:nil
82 Neabd29cb9ddb4b9c9375d6666e982629 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nf732288fde364de79370ff49de338d55 schema:volumeNumber 427
85 rdf:type schema:PublicationVolume
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
90 schema:name Other Physical Sciences
91 rdf:type schema:DefinedTerm
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.01024231643.99 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
97 schema:familyName Awschalom
98 schema:givenName D. D.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024231643.99
100 rdf:type schema:Person
101 sg:person.01256324271.55 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
102 schema:familyName Myers
103 schema:givenName R. C.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256324271.55
105 rdf:type schema:Person
106 sg:person.015033247531.51 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
107 schema:familyName Kato
108 schema:givenName Y.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033247531.51
110 rdf:type schema:Person
111 sg:person.0772322701.64 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
112 schema:familyName Gossard
113 schema:givenName A. C.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772322701.64
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-662-05003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005015903
117 https://doi.org/10.1007/978-3-662-05003-3
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/16420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033723558
120 https://doi.org/10.1038/16420
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/414619a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027686968
123 https://doi.org/10.1038/414619a
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.102730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057650306
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.1347023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697312
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.371872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058006273
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/0022-3719/17/33/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058961842
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrev.100.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416832
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physreva.57.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048023467
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.38.7595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060548027
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.41.7685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554290
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.41.8278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554397
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.53.3912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021347992
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.56.7574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586596
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.59.15902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591322
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.60.728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797361
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.68.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804043
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.69.848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806054
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.78.1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814726
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.80.4313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817462
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.84.4220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030336001
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.88.126601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824644
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.90.146801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008495700
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.91.126405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004157043
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/jqe.1986.1073165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305510
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.1061169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445077
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1080880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447797
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
176 schema:name Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...