Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-11

AUTHORS

Nanfeng Zheng, Xianhui Bu, Pingyun Feng

ABSTRACT

Natural porous solids such as zeolites are invariably formed with inorganic cations such as Na(+) and K(+) (refs 1, 2). However, current research on new porous materials is mainly focused on the use of organic species as either structure-directing or structure-building units; purely inorganic systems have received relatively little attention in exploratory synthetic work. Here we report the synthesis of a series of three-dimensional sulphides and selenides containing highly mobile alkali metal cations as charge-balancing extra-framework cations. Such crystalline inorganic chalcogenides integrate zeolite-like architecture with high anionic framework polarizability and high concentrations of mobile cations. Such structural features are particularly desirable for the development of fast-ion conductors. These materials demonstrate high ionic conductivity (up to 1.8 x 10(-2) ohm(-1) cm(-1)) at room temperature and moderate to high humidity. This synthetic methodology, together with novel structural, physical and chemical properties, may lead to the development of new microporous and open-framework materials with potential applications in areas such as batteries, fuel cells, electrochemical sensors and photocatalysis. More... »

PAGES

428

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02159

DOI

http://dx.doi.org/10.1038/nature02159

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023478061

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14647378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Chemistry, University of California, Riverside, California 92521, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Nanfeng", 
        "id": "sg:person.01004673261.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004673261.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Chemistry, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bu", 
        "givenName": "Xianhui", 
        "id": "sg:person.0642501025.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642501025.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Chemistry, University of California, Riverside, California 92521, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Pingyun", 
        "id": "sg:person.01366105125.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366105125.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1521-3773(19991115)38:22<3268::aid-anie3268>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002846037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0286(99)00014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009358646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5404.963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032030193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2991(08)63599-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035579709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046852773", 
          "https://doi.org/10.1038/41937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046852773", 
          "https://doi.org/10.1038/41937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2991(08)61735-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047933069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zaac.19613090105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048990823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049297516", 
          "https://doi.org/10.1038/nature00785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049297516", 
          "https://doi.org/10.1038/nature00785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a909005c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053635006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja021009z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055826336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja021009z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055826336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja972111c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055868002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja972111c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055868002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1078663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.258.5089.1769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062545075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.268.5215.1324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5350.548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062559398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5405.1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564249"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-11", 
    "datePublishedReg": "2003-11-01", 
    "description": "Natural porous solids such as zeolites are invariably formed with inorganic cations such as Na(+) and K(+) (refs 1, 2). However, current research on new porous materials is mainly focused on the use of organic species as either structure-directing or structure-building units; purely inorganic systems have received relatively little attention in exploratory synthetic work. Here we report the synthesis of a series of three-dimensional sulphides and selenides containing highly mobile alkali metal cations as charge-balancing extra-framework cations. Such crystalline inorganic chalcogenides integrate zeolite-like architecture with high anionic framework polarizability and high concentrations of mobile cations. Such structural features are particularly desirable for the development of fast-ion conductors. These materials demonstrate high ionic conductivity (up to 1.8 x 10(-2) ohm(-1) cm(-1)) at room temperature and moderate to high humidity. This synthetic methodology, together with novel structural, physical and chemical properties, may lead to the development of new microporous and open-framework materials with potential applications in areas such as batteries, fuel cells, electrochemical sensors and photocatalysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02159", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6965", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "426"
      }
    ], 
    "name": "Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity", 
    "pagination": "428", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6fdb4bdebb0e9659fa869523524360996a601d717138672c1a51b9016da70c08"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14647378"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02159"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023478061"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02159", 
      "https://app.dimensions.ai/details/publication/pub.1023478061"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29204_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02159"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02159'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02159'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02159'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02159'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02159 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author Nb021bba6aa304585adcb8f5b742652c5
4 schema:citation sg:pub.10.1038/41937
5 sg:pub.10.1038/nature00785
6 https://doi.org/10.1002/(sici)1521-3773(19991115)38:22<3268::aid-anie3268>3.0.co;2-u
7 https://doi.org/10.1002/zaac.19613090105
8 https://doi.org/10.1016/s0167-2991(08)61735-8
9 https://doi.org/10.1016/s0167-2991(08)63599-5
10 https://doi.org/10.1016/s1359-0286(99)00014-5
11 https://doi.org/10.1021/ja021009z
12 https://doi.org/10.1021/ja972111c
13 https://doi.org/10.1039/a909005c
14 https://doi.org/10.1126/science.1078663
15 https://doi.org/10.1126/science.258.5089.1769
16 https://doi.org/10.1126/science.268.5215.1324
17 https://doi.org/10.1126/science.279.5350.548
18 https://doi.org/10.1126/science.283.5404.963
19 https://doi.org/10.1126/science.283.5405.1145
20 schema:datePublished 2003-11
21 schema:datePublishedReg 2003-11-01
22 schema:description Natural porous solids such as zeolites are invariably formed with inorganic cations such as Na(+) and K(+) (refs 1, 2). However, current research on new porous materials is mainly focused on the use of organic species as either structure-directing or structure-building units; purely inorganic systems have received relatively little attention in exploratory synthetic work. Here we report the synthesis of a series of three-dimensional sulphides and selenides containing highly mobile alkali metal cations as charge-balancing extra-framework cations. Such crystalline inorganic chalcogenides integrate zeolite-like architecture with high anionic framework polarizability and high concentrations of mobile cations. Such structural features are particularly desirable for the development of fast-ion conductors. These materials demonstrate high ionic conductivity (up to 1.8 x 10(-2) ohm(-1) cm(-1)) at room temperature and moderate to high humidity. This synthetic methodology, together with novel structural, physical and chemical properties, may lead to the development of new microporous and open-framework materials with potential applications in areas such as batteries, fuel cells, electrochemical sensors and photocatalysis.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N8945d5d0cd6046efba4423b66c3c4d63
27 Nbb90eb8908b64ed1b4bd7e3112a8d1c4
28 sg:journal.1018957
29 schema:name Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity
30 schema:pagination 428
31 schema:productId N4d8a52fa234741c687775f5e60ff63f4
32 Na69f648e5f344a38a839f64da3f3b56f
33 Nbcfe626ea2bf45188795a2d2b16b1643
34 Ndd6ffe41ba5740e4957d661554df090e
35 Ne91fbad7dcfa4251a1325cdba52bc9ec
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023478061
37 https://doi.org/10.1038/nature02159
38 schema:sdDatePublished 2019-04-11T11:54
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N0394273c9a06440cb7185c40fe48ac72
41 schema:url https://www.nature.com/articles/nature02159
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0394273c9a06440cb7185c40fe48ac72 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N1d0bcbbde8e6439b898abbc2aca62418 rdf:first sg:person.01366105125.10
48 rdf:rest rdf:nil
49 N4d8a52fa234741c687775f5e60ff63f4 schema:name readcube_id
50 schema:value 6fdb4bdebb0e9659fa869523524360996a601d717138672c1a51b9016da70c08
51 rdf:type schema:PropertyValue
52 N8945d5d0cd6046efba4423b66c3c4d63 schema:volumeNumber 426
53 rdf:type schema:PublicationVolume
54 Na69f648e5f344a38a839f64da3f3b56f schema:name doi
55 schema:value 10.1038/nature02159
56 rdf:type schema:PropertyValue
57 Nae76188fc1c74a778fcefd4b7b261ee9 rdf:first sg:person.0642501025.54
58 rdf:rest N1d0bcbbde8e6439b898abbc2aca62418
59 Nb021bba6aa304585adcb8f5b742652c5 rdf:first sg:person.01004673261.70
60 rdf:rest Nae76188fc1c74a778fcefd4b7b261ee9
61 Nbb90eb8908b64ed1b4bd7e3112a8d1c4 schema:issueNumber 6965
62 rdf:type schema:PublicationIssue
63 Nbcfe626ea2bf45188795a2d2b16b1643 schema:name pubmed_id
64 schema:value 14647378
65 rdf:type schema:PropertyValue
66 Ndd6ffe41ba5740e4957d661554df090e schema:name nlm_unique_id
67 schema:value 0410462
68 rdf:type schema:PropertyValue
69 Ne91fbad7dcfa4251a1325cdba52bc9ec schema:name dimensions_id
70 schema:value pub.1023478061
71 rdf:type schema:PropertyValue
72 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
73 schema:name Chemical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
76 schema:name Macromolecular and Materials Chemistry
77 rdf:type schema:DefinedTerm
78 sg:journal.1018957 schema:issn 0090-0028
79 1476-4687
80 schema:name Nature
81 rdf:type schema:Periodical
82 sg:person.01004673261.70 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
83 schema:familyName Zheng
84 schema:givenName Nanfeng
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004673261.70
86 rdf:type schema:Person
87 sg:person.01366105125.10 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
88 schema:familyName Feng
89 schema:givenName Pingyun
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366105125.10
91 rdf:type schema:Person
92 sg:person.0642501025.54 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
93 schema:familyName Bu
94 schema:givenName Xianhui
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642501025.54
96 rdf:type schema:Person
97 sg:pub.10.1038/41937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046852773
98 https://doi.org/10.1038/41937
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/nature00785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049297516
101 https://doi.org/10.1038/nature00785
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/(sici)1521-3773(19991115)38:22<3268::aid-anie3268>3.0.co;2-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1002846037
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/zaac.19613090105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048990823
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0167-2991(08)61735-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047933069
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0167-2991(08)63599-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035579709
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s1359-0286(99)00014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009358646
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/ja021009z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055826336
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ja972111c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055868002
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1039/a909005c schema:sameAs https://app.dimensions.ai/details/publication/pub.1053635006
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1126/science.1078663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447149
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1126/science.258.5089.1769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062545075
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1126/science.268.5215.1324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550261
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1126/science.279.5350.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559398
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1126/science.283.5404.963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032030193
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.283.5405.1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564249
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
132 schema:name Department of Chemistry, University of California, Santa Barbara, California 93106, USA
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.266097.c schema:alternateName University of California, Riverside
135 schema:name Department of Chemistry, University of California, Riverside, California 92521, USA
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...