Microfluidic sorting in an optical lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-11

AUTHORS

M. P. MacDonald, G. C. Spalding, K. Dholakia

ABSTRACT

The response of a microscopic dielectric object to an applied light field can profoundly affect its kinetic motion1. A classic example of this is an optical trap, which can hold a particle in a tightly focused light beam2. Optical fields can also be used to arrange, guide or deflect particles in appropriate light-field geometries3,4. Here we demonstrate an optical sorter for microscopic particles that exploits the interaction of particles—biological or otherwise—with an extended, interlinked, dynamically reconfigurable, three-dimensional optical lattice. The strength of this interaction with the lattice sites depends on the optical polarizability of the particles, giving tunable selection criteria. We demonstrate both sorting by size (of protein microcapsule drug delivery agents) and sorting by refractive index (of other colloidal particle streams). The sorting efficiency of this method approaches 100%, with values of 96% or more observed even for concentrated solutions with throughputs exceeding those reported for fluorescence-activated cell sorting5. This powerful, non-invasive technique is suited to sorting and fractionation within integrated (‘lab-on-a-chip’) microfluidic systems, and can be applied in colloidal, molecular and biological research. More... »

PAGES

421-424

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02144

DOI

http://dx.doi.org/10.1038/nature02144

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009101199

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14647376


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Capsules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fractionation, Field Flow", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microfluidics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Optics and Photonics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Particle Size", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK", 
          "id": "http://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacDonald", 
        "givenName": "M. P.", 
        "id": "sg:person.01343504563.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343504563.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Illinois Wesleyan University, 61702, Bloomington, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.257312.0", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK", 
            "Department of Physics, Illinois Wesleyan University, 61702, Bloomington, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spalding", 
        "givenName": "G. C.", 
        "id": "sg:person.01151005435.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151005435.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK", 
          "id": "http://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dholakia", 
        "givenName": "K.", 
        "id": "sg:person.01311161377.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311161377.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/415039a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052648436", 
          "https://doi.org/10.1038/415039a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044704858", 
          "https://doi.org/10.1038/nature01613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/15095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036226690", 
          "https://doi.org/10.1038/15095"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-11", 
    "datePublishedReg": "2003-11-01", 
    "description": "The response of a microscopic dielectric object to an applied light field can profoundly affect its kinetic motion1. A classic example of this is an optical trap, which can hold a particle in a tightly focused light beam2. Optical fields can also be used to arrange, guide or deflect particles in appropriate light-field geometries3,4. Here we demonstrate an optical sorter for microscopic particles that exploits the interaction of particles\u2014biological or otherwise\u2014with an extended, interlinked, dynamically reconfigurable, three-dimensional optical lattice. The strength of this interaction with the lattice sites depends on the optical polarizability of the particles, giving tunable selection criteria. We demonstrate both sorting by size (of protein microcapsule drug delivery agents) and sorting by refractive index (of other colloidal particle streams). The sorting efficiency of this method approaches 100%, with values of 96% or more observed even for concentrated solutions with throughputs exceeding those reported for fluorescence-activated cell sorting5. This powerful, non-invasive technique is suited to sorting and fractionation within integrated (\u2018lab-on-a-chip\u2019) microfluidic systems, and can be applied in colloidal, molecular and biological research.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature02144", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6965", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "426"
      }
    ], 
    "keywords": [
      "optical lattice", 
      "three-dimensional optical lattice", 
      "optical field", 
      "optical trap", 
      "optical polarizability", 
      "refractive index", 
      "light field", 
      "microscopic particles", 
      "lattice sites", 
      "dielectric objects", 
      "particles", 
      "lattice", 
      "field", 
      "polarizability", 
      "microfluidic system", 
      "traps", 
      "optical sorter", 
      "colloidal", 
      "interaction", 
      "biological research", 
      "concentrated solutions", 
      "non-invasive technique", 
      "microfluidics", 
      "objects", 
      "technique", 
      "efficiency", 
      "strength", 
      "throughput", 
      "system", 
      "size", 
      "method", 
      "values", 
      "classic example", 
      "index", 
      "sorter", 
      "example", 
      "solution", 
      "selection criteria", 
      "sites", 
      "response", 
      "sorting", 
      "fractionation", 
      "research", 
      "criteria"
    ], 
    "name": "Microfluidic sorting in an optical lattice", 
    "pagination": "421-424", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009101199"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02144"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14647376"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02144", 
      "https://app.dimensions.ai/details/publication/pub.1009101199"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_368.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature02144"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02144'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02144'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02144'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02144'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      81 URIs      70 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02144 schema:about N21691ca55dd74a0ebcef4962ef43bbda
2 N36a4542d61d3491fa624d8184ef4c461
3 N41b7d5e63d524333bc3c8ab2775e4575
4 N5123377ceb224596ab72b0da2d9225ce
5 N7c13d216e6ee4a7084c5345db343aeca
6 N855e3dae8a704cc8ba731ede79fd4057
7 Ndc6e812978134f72b5bbb7e9c65f6be3
8 Neecba28f9c0c4323befadd2278340869
9 anzsrc-for:02
10 anzsrc-for:0299
11 schema:author Na47304d2224a4176b3080e1c076908e5
12 schema:citation sg:pub.10.1038/15095
13 sg:pub.10.1038/415039a
14 sg:pub.10.1038/nature01613
15 schema:datePublished 2003-11
16 schema:datePublishedReg 2003-11-01
17 schema:description The response of a microscopic dielectric object to an applied light field can profoundly affect its kinetic motion1. A classic example of this is an optical trap, which can hold a particle in a tightly focused light beam2. Optical fields can also be used to arrange, guide or deflect particles in appropriate light-field geometries3,4. Here we demonstrate an optical sorter for microscopic particles that exploits the interaction of particles—biological or otherwise—with an extended, interlinked, dynamically reconfigurable, three-dimensional optical lattice. The strength of this interaction with the lattice sites depends on the optical polarizability of the particles, giving tunable selection criteria. We demonstrate both sorting by size (of protein microcapsule drug delivery agents) and sorting by refractive index (of other colloidal particle streams). The sorting efficiency of this method approaches 100%, with values of 96% or more observed even for concentrated solutions with throughputs exceeding those reported for fluorescence-activated cell sorting5. This powerful, non-invasive technique is suited to sorting and fractionation within integrated (‘lab-on-a-chip’) microfluidic systems, and can be applied in colloidal, molecular and biological research.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N0a8b7a854f924762918bd0aeb336bd4b
21 N81b4fb71379748f3824cf265a047a7e7
22 sg:journal.1018957
23 schema:keywords biological research
24 classic example
25 colloidal
26 concentrated solutions
27 criteria
28 dielectric objects
29 efficiency
30 example
31 field
32 fractionation
33 index
34 interaction
35 lattice
36 lattice sites
37 light field
38 method
39 microfluidic system
40 microfluidics
41 microscopic particles
42 non-invasive technique
43 objects
44 optical field
45 optical lattice
46 optical polarizability
47 optical sorter
48 optical trap
49 particles
50 polarizability
51 refractive index
52 research
53 response
54 selection criteria
55 sites
56 size
57 solution
58 sorter
59 sorting
60 strength
61 system
62 technique
63 three-dimensional optical lattice
64 throughput
65 traps
66 values
67 schema:name Microfluidic sorting in an optical lattice
68 schema:pagination 421-424
69 schema:productId N629b59f3cf114a03a93c015b0e6d9d78
70 N87f47bf7cb6f41e78e580c09533b9558
71 Ne3e7960af2da40f2aa81a132158a2c53
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009101199
73 https://doi.org/10.1038/nature02144
74 schema:sdDatePublished 2022-12-01T06:23
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Na96428db8afa40b394deaf090a9a7cb8
77 schema:url https://doi.org/10.1038/nature02144
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0a8b7a854f924762918bd0aeb336bd4b schema:volumeNumber 426
82 rdf:type schema:PublicationVolume
83 N21691ca55dd74a0ebcef4962ef43bbda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Colloids
85 rdf:type schema:DefinedTerm
86 N36a4542d61d3491fa624d8184ef4c461 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Light
88 rdf:type schema:DefinedTerm
89 N41b7d5e63d524333bc3c8ab2775e4575 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Optics and Photonics
91 rdf:type schema:DefinedTerm
92 N5123377ceb224596ab72b0da2d9225ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Particle Size
94 rdf:type schema:DefinedTerm
95 N629b59f3cf114a03a93c015b0e6d9d78 schema:name pubmed_id
96 schema:value 14647376
97 rdf:type schema:PropertyValue
98 N7c13d216e6ee4a7084c5345db343aeca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Motion
100 rdf:type schema:DefinedTerm
101 N81b4fb71379748f3824cf265a047a7e7 schema:issueNumber 6965
102 rdf:type schema:PublicationIssue
103 N855e3dae8a704cc8ba731ede79fd4057 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Fractionation, Field Flow
105 rdf:type schema:DefinedTerm
106 N87f47bf7cb6f41e78e580c09533b9558 schema:name dimensions_id
107 schema:value pub.1009101199
108 rdf:type schema:PropertyValue
109 N8a62a62956e54ad68997a595c461de42 rdf:first sg:person.01151005435.39
110 rdf:rest Ned21c3aa5f234a75b78eda1e5f25a6de
111 Na47304d2224a4176b3080e1c076908e5 rdf:first sg:person.01343504563.73
112 rdf:rest N8a62a62956e54ad68997a595c461de42
113 Na96428db8afa40b394deaf090a9a7cb8 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Ndc6e812978134f72b5bbb7e9c65f6be3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Microfluidics
117 rdf:type schema:DefinedTerm
118 Ne3e7960af2da40f2aa81a132158a2c53 schema:name doi
119 schema:value 10.1038/nature02144
120 rdf:type schema:PropertyValue
121 Ned21c3aa5f234a75b78eda1e5f25a6de rdf:first sg:person.01311161377.24
122 rdf:rest rdf:nil
123 Neecba28f9c0c4323befadd2278340869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Capsules
125 rdf:type schema:DefinedTerm
126 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
127 schema:name Physical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
130 schema:name Other Physical Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1018957 schema:issn 0028-0836
133 1476-4687
134 schema:name Nature
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.01151005435.39 schema:affiliation grid-institutes:grid.257312.0
138 schema:familyName Spalding
139 schema:givenName G. C.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151005435.39
141 rdf:type schema:Person
142 sg:person.01311161377.24 schema:affiliation grid-institutes:grid.11914.3c
143 schema:familyName Dholakia
144 schema:givenName K.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311161377.24
146 rdf:type schema:Person
147 sg:person.01343504563.73 schema:affiliation grid-institutes:grid.11914.3c
148 schema:familyName MacDonald
149 schema:givenName M. P.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343504563.73
151 rdf:type schema:Person
152 sg:pub.10.1038/15095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036226690
153 https://doi.org/10.1038/15095
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/415039a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052648436
156 https://doi.org/10.1038/415039a
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature01613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044704858
159 https://doi.org/10.1038/nature01613
160 rdf:type schema:CreativeWork
161 grid-institutes:grid.11914.3c schema:alternateName School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK
162 schema:name School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK
163 rdf:type schema:Organization
164 grid-institutes:grid.257312.0 schema:alternateName Department of Physics, Illinois Wesleyan University, 61702, Bloomington, Illinois, USA
165 schema:name Department of Physics, Illinois Wesleyan University, 61702, Bloomington, Illinois, USA
166 School of Physics and Astronomy, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Fife, UK
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...