High-Q photonic nanocavity in a two-dimensional photonic crystal View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-10

AUTHORS

Yoshihiro Akahane, Takashi Asano, Bong-Shik Song, Susumu Noda

ABSTRACT

Photonic cavities that strongly confine light are finding applications in many areas of physics and engineering, including coherent electron-photon interactions, ultra-small filters, low-threshold lasers, photonic chips, nonlinear optics and quantum information processing. Critical for these applications is the realization of a cavity with both high quality factor, Q, and small modal volume, V. The ratio Q/V determines the strength of the various cavity interactions, and an ultra-small cavity enables large-scale integration and single-mode operation for a broad range of wavelengths. However, a high-Q cavity of optical wavelength size is difficult to fabricate, as radiation loss increases in inverse proportion to cavity size. With the exception of a few recent theoretical studies, definitive theories and experiments for creating high-Q nanocavities have not been extensively investigated. Here we use a silicon-based two-dimensional photonic-crystal slab to fabricate a nanocavity with Q = 45,000 and V = 7.0 x 10(-14) cm3; the value of Q/V is 10-100 times larger than in previous studies. Underlying this development is the realization that light should be confined gently in order to be confined strongly. Integration with other photonic elements is straightforward, and a large free spectral range of 100 nm has been demonstrated. More... »

PAGES

944

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature02063

DOI

http://dx.doi.org/10.1038/nature02063

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035840991

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14586465


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sumitomo Electric Industries (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.410799.2", 
          "name": [
            "Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan", 
            "Advanced Materials R&D Laboratories, Sumitomo Electric Industries, Ltd, Itami, Hyogo 664-0016, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akahane", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.0642270021.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642270021.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asano", 
        "givenName": "Takashi", 
        "id": "sg:person.0713625342.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713625342.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Bong-Shik", 
        "id": "sg:person.01163345507.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163345507.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noda", 
        "givenName": "Susumu", 
        "id": "sg:person.01024631621.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024631621.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.284.5421.1819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021545774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025910653", 
          "https://doi.org/10.1038/nature01371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025910653", 
          "https://doi.org/10.1038/nature01371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028723832", 
          "https://doi.org/10.1038/35036532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028723832", 
          "https://doi.org/10.1038/35036532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5479.604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031605252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415621a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032894297", 
          "https://doi.org/10.1038/415621a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415621a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032894297", 
          "https://doi.org/10.1038/415621a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.016608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037700525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.016608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037700525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1375838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1427748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057705630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1480103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057710793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1604179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057724903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1083066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062572553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.10.000670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065181932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.23.000247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217817"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-10", 
    "datePublishedReg": "2003-10-01", 
    "description": "Photonic cavities that strongly confine light are finding applications in many areas of physics and engineering, including coherent electron-photon interactions, ultra-small filters, low-threshold lasers, photonic chips, nonlinear optics and quantum information processing. Critical for these applications is the realization of a cavity with both high quality factor, Q, and small modal volume, V. The ratio Q/V determines the strength of the various cavity interactions, and an ultra-small cavity enables large-scale integration and single-mode operation for a broad range of wavelengths. However, a high-Q cavity of optical wavelength size is difficult to fabricate, as radiation loss increases in inverse proportion to cavity size. With the exception of a few recent theoretical studies, definitive theories and experiments for creating high-Q nanocavities have not been extensively investigated. Here we use a silicon-based two-dimensional photonic-crystal slab to fabricate a nanocavity with Q = 45,000 and V = 7.0 x 10(-14) cm3; the value of Q/V is 10-100 times larger than in previous studies. Underlying this development is the realization that light should be confined gently in order to be confined strongly. Integration with other photonic elements is straightforward, and a large free spectral range of 100 nm has been demonstrated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature02063", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6961", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "425"
      }
    ], 
    "name": "High-Q photonic nanocavity in a two-dimensional photonic crystal", 
    "pagination": "944", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aabbf4f2b8a5ef861402b7536c25bf733a93db435c721cc3a793f375cbe3e188"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14586465"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature02063"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035840991"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature02063", 
      "https://app.dimensions.ai/details/publication/pub.1035840991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature02063"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature02063'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature02063'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature02063'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature02063'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature02063 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N50b9fe6b54384ad6bfc005d97da2db36
4 schema:citation sg:pub.10.1038/35036532
5 sg:pub.10.1038/415621a
6 sg:pub.10.1038/nature01371
7 https://doi.org/10.1063/1.124894
8 https://doi.org/10.1063/1.1375838
9 https://doi.org/10.1063/1.1427748
10 https://doi.org/10.1063/1.1480103
11 https://doi.org/10.1063/1.1604179
12 https://doi.org/10.1103/physreve.65.016608
13 https://doi.org/10.1103/physrevlett.58.2059
14 https://doi.org/10.1103/revmodphys.71.1591
15 https://doi.org/10.1126/science.1083066
16 https://doi.org/10.1126/science.284.5421.1819
17 https://doi.org/10.1126/science.289.5479.604
18 https://doi.org/10.1126/science.290.5500.2282
19 https://doi.org/10.1364/oe.10.000670
20 https://doi.org/10.1364/ol.23.000247
21 schema:datePublished 2003-10
22 schema:datePublishedReg 2003-10-01
23 schema:description Photonic cavities that strongly confine light are finding applications in many areas of physics and engineering, including coherent electron-photon interactions, ultra-small filters, low-threshold lasers, photonic chips, nonlinear optics and quantum information processing. Critical for these applications is the realization of a cavity with both high quality factor, Q, and small modal volume, V. The ratio Q/V determines the strength of the various cavity interactions, and an ultra-small cavity enables large-scale integration and single-mode operation for a broad range of wavelengths. However, a high-Q cavity of optical wavelength size is difficult to fabricate, as radiation loss increases in inverse proportion to cavity size. With the exception of a few recent theoretical studies, definitive theories and experiments for creating high-Q nanocavities have not been extensively investigated. Here we use a silicon-based two-dimensional photonic-crystal slab to fabricate a nanocavity with Q = 45,000 and V = 7.0 x 10(-14) cm3; the value of Q/V is 10-100 times larger than in previous studies. Underlying this development is the realization that light should be confined gently in order to be confined strongly. Integration with other photonic elements is straightforward, and a large free spectral range of 100 nm has been demonstrated.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N24b805e47c014d719db003107744f62c
28 Nc1de10fd6e58418b90062f0ecec2d411
29 sg:journal.1018957
30 schema:name High-Q photonic nanocavity in a two-dimensional photonic crystal
31 schema:pagination 944
32 schema:productId N573e047058434d2eb162d8cd3daf777a
33 N751c48763ad543c88b824227a5ab495e
34 N8f2d6e86dc044f07adf35579bc412179
35 N9aa304942e444bd7955e86952bffc47b
36 Nbbf512a28dd040218abee9802b0f2e08
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035840991
38 https://doi.org/10.1038/nature02063
39 schema:sdDatePublished 2019-04-11T12:24
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N79c49b5f401f465784472ca3cd4b93c2
42 schema:url https://www.nature.com/articles/nature02063
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N24b805e47c014d719db003107744f62c schema:volumeNumber 425
47 rdf:type schema:PublicationVolume
48 N3c28c579e1ed4cb68f68ea15c0bf79a9 rdf:first sg:person.01024631621.47
49 rdf:rest rdf:nil
50 N50b9fe6b54384ad6bfc005d97da2db36 rdf:first sg:person.0642270021.17
51 rdf:rest N66516d19d0d94893927476f66924825a
52 N573e047058434d2eb162d8cd3daf777a schema:name doi
53 schema:value 10.1038/nature02063
54 rdf:type schema:PropertyValue
55 N66516d19d0d94893927476f66924825a rdf:first sg:person.0713625342.83
56 rdf:rest Nc85f1bc9e2304f0c8cc36a3bfc0e7d75
57 N751c48763ad543c88b824227a5ab495e schema:name pubmed_id
58 schema:value 14586465
59 rdf:type schema:PropertyValue
60 N79c49b5f401f465784472ca3cd4b93c2 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N8f2d6e86dc044f07adf35579bc412179 schema:name dimensions_id
63 schema:value pub.1035840991
64 rdf:type schema:PropertyValue
65 N9aa304942e444bd7955e86952bffc47b schema:name nlm_unique_id
66 schema:value 0410462
67 rdf:type schema:PropertyValue
68 Nbbf512a28dd040218abee9802b0f2e08 schema:name readcube_id
69 schema:value aabbf4f2b8a5ef861402b7536c25bf733a93db435c721cc3a793f375cbe3e188
70 rdf:type schema:PropertyValue
71 Nc1de10fd6e58418b90062f0ecec2d411 schema:issueNumber 6961
72 rdf:type schema:PublicationIssue
73 Nc85f1bc9e2304f0c8cc36a3bfc0e7d75 rdf:first sg:person.01163345507.63
74 rdf:rest N3c28c579e1ed4cb68f68ea15c0bf79a9
75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
79 schema:name Optical Physics
80 rdf:type schema:DefinedTerm
81 sg:journal.1018957 schema:issn 0090-0028
82 1476-4687
83 schema:name Nature
84 rdf:type schema:Periodical
85 sg:person.01024631621.47 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
86 schema:familyName Noda
87 schema:givenName Susumu
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024631621.47
89 rdf:type schema:Person
90 sg:person.01163345507.63 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
91 schema:familyName Song
92 schema:givenName Bong-Shik
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163345507.63
94 rdf:type schema:Person
95 sg:person.0642270021.17 schema:affiliation https://www.grid.ac/institutes/grid.410799.2
96 schema:familyName Akahane
97 schema:givenName Yoshihiro
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642270021.17
99 rdf:type schema:Person
100 sg:person.0713625342.83 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
101 schema:familyName Asano
102 schema:givenName Takashi
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713625342.83
104 rdf:type schema:Person
105 sg:pub.10.1038/35036532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028723832
106 https://doi.org/10.1038/35036532
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/415621a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032894297
109 https://doi.org/10.1038/415621a
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature01371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025910653
112 https://doi.org/10.1038/nature01371
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.124894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689022
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.1375838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700440
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.1427748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057705630
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.1480103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057710793
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.1604179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057724903
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physreve.65.016608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037700525
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.58.2059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042120164
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/revmodphys.71.1591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839445
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1126/science.1083066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447984
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1126/science.284.5421.1819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021545774
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1126/science.289.5479.604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031605252
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.290.5500.2282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572553
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1364/oe.10.000670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065181932
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1364/ol.23.000247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217817
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
143 schema:name Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.410799.2 schema:alternateName Sumitomo Electric Industries (Japan)
146 schema:name Advanced Materials R&D Laboratories, Sumitomo Electric Industries, Ltd, Itami, Hyogo 664-0016, Japan
147 Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...