Experimental realization of a one-atom laser in the regime of strong coupling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-09

AUTHORS

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, H. J. Kimble

ABSTRACT

Conventional lasers (from table-top systems to microscopic devices) typically operate in the so-called weak-coupling regime, involving large numbers of atoms and photons; individual quanta have a negligible impact on the system dynamics. However, this is no longer the case when the system approaches the regime of strong coupling for which the number of atoms and photons can become quite small. Indeed, the lasing properties of a single atom in a resonant cavity have been extensively investigated theoretically. Here we report the experimental realization of a one-atom laser operated in the regime of strong coupling. We exploit recent advances in cavity quantum electrodynamics that allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient to saturate the atomic transition. The observed characteristics of the atom-cavity system are qualitatively different from those of the familiar many-atom case. Specifically, our measurements of the intracavity photon number versus pump intensity indicate that there is no threshold for lasing, and we infer that the output flux from the cavity mode exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order intensity correlation function demonstrate that our one-atom laser generates manifestly quantum (nonclassical) light, typified by photon anti-bunching and sub-poissonian photon statistics. More... »

PAGES

268

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01974

DOI

http://dx.doi.org/10.1038/nature01974

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022559465

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/13679909


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKeever", 
        "givenName": "J.", 
        "id": "sg:person.0576674144.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576674144.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boca", 
        "givenName": "A.", 
        "id": "sg:person.01007617336.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007617336.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boozer", 
        "givenName": "A. D.", 
        "id": "sg:person.0751602642.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751602642.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buck", 
        "givenName": "J. R.", 
        "id": "sg:person.0645007344.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645007344.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimble", 
        "givenName": "H. J.", 
        "id": "sg:person.01327141137.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327141137.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025671152", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1470-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025671152", 
          "https://doi.org/10.1007/978-1-4612-1470-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1470-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025671152", 
          "https://doi.org/10.1007/978-1-4612-1470-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029922534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029922534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030933700", 
          "https://doi.org/10.1038/nature01939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030933700", 
          "https://doi.org/10.1038/nature01939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500349414550601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032505892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.023814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039108807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.023814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039108807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1528672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046341158", 
          "https://doi.org/10.1134/1.1528672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03875-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048690794", 
          "https://doi.org/10.1007/978-3-662-03875-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03875-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048690794", 
          "https://doi.org/10.1007/978-3-662-03875-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.133602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051734713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.133602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051734713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.5944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.5944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060488066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060488066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.50.4318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060489617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.50.4318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060489617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.3257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.3257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.r3734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.r3734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.3923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.3923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.r1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.r1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.3210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.3210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.3267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.3267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1997-00150-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1238/physica.topical.076a00127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064438410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139644105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1098883481", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108493698", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108493698", 
          "https://doi.org/10.1007/978-3-662-04103-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108493698", 
          "https://doi.org/10.1007/978-3-662-04103-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-09", 
    "datePublishedReg": "2003-09-01", 
    "description": "Conventional lasers (from table-top systems to microscopic devices) typically operate in the so-called weak-coupling regime, involving large numbers of atoms and photons; individual quanta have a negligible impact on the system dynamics. However, this is no longer the case when the system approaches the regime of strong coupling for which the number of atoms and photons can become quite small. Indeed, the lasing properties of a single atom in a resonant cavity have been extensively investigated theoretically. Here we report the experimental realization of a one-atom laser operated in the regime of strong coupling. We exploit recent advances in cavity quantum electrodynamics that allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient to saturate the atomic transition. The observed characteristics of the atom-cavity system are qualitatively different from those of the familiar many-atom case. Specifically, our measurements of the intracavity photon number versus pump intensity indicate that there is no threshold for lasing, and we infer that the output flux from the cavity mode exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order intensity correlation function demonstrate that our one-atom laser generates manifestly quantum (nonclassical) light, typified by photon anti-bunching and sub-poissonian photon statistics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature01974", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6955", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "425"
      }
    ], 
    "name": "Experimental realization of a one-atom laser in the regime of strong coupling", 
    "pagination": "268", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b7a8d7412cdd328cf1594245017abb0325af5754d714809e4d31d7d13c47bc7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "13679909"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01974"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022559465"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01974", 
      "https://app.dimensions.ai/details/publication/pub.1022559465"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature01974"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01974'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01974'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01974'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01974'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01974 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N84e75620ccd5484b9dfee1371f1bc90f
4 schema:citation sg:pub.10.1007/978-1-4612-1470-0
5 sg:pub.10.1007/978-3-662-03875-8
6 sg:pub.10.1007/978-3-662-04103-1
7 sg:pub.10.1038/nature01939
8 sg:pub.10.1134/1.1528672
9 https://app.dimensions.ai/details/publication/pub.1025671152
10 https://app.dimensions.ai/details/publication/pub.1098883481
11 https://app.dimensions.ai/details/publication/pub.1108493698
12 https://doi.org/10.1017/cbo9781139644105
13 https://doi.org/10.1080/09500349414550601
14 https://doi.org/10.1103/physreva.46.5944
15 https://doi.org/10.1103/physreva.48.732
16 https://doi.org/10.1103/physreva.50.4318
17 https://doi.org/10.1103/physreva.51.3257
18 https://doi.org/10.1103/physreva.53.r3734
19 https://doi.org/10.1103/physreva.55.3923
20 https://doi.org/10.1103/physreva.56.1662
21 https://doi.org/10.1103/physreva.56.r1099
22 https://doi.org/10.1103/physreva.58.3210
23 https://doi.org/10.1103/physreva.60.3267
24 https://doi.org/10.1103/physreva.70.023814
25 https://doi.org/10.1103/physrevlett.72.3973
26 https://doi.org/10.1103/physrevlett.83.1311
27 https://doi.org/10.1103/physrevlett.83.4987
28 https://doi.org/10.1103/physrevlett.90.133602
29 https://doi.org/10.1209/epl/i1997-00150-y
30 https://doi.org/10.1238/physica.topical.076a00127
31 schema:datePublished 2003-09
32 schema:datePublishedReg 2003-09-01
33 schema:description Conventional lasers (from table-top systems to microscopic devices) typically operate in the so-called weak-coupling regime, involving large numbers of atoms and photons; individual quanta have a negligible impact on the system dynamics. However, this is no longer the case when the system approaches the regime of strong coupling for which the number of atoms and photons can become quite small. Indeed, the lasing properties of a single atom in a resonant cavity have been extensively investigated theoretically. Here we report the experimental realization of a one-atom laser operated in the regime of strong coupling. We exploit recent advances in cavity quantum electrodynamics that allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient to saturate the atomic transition. The observed characteristics of the atom-cavity system are qualitatively different from those of the familiar many-atom case. Specifically, our measurements of the intracavity photon number versus pump intensity indicate that there is no threshold for lasing, and we infer that the output flux from the cavity mode exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order intensity correlation function demonstrate that our one-atom laser generates manifestly quantum (nonclassical) light, typified by photon anti-bunching and sub-poissonian photon statistics.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N13c8beefaec449cfa5e08f98e5d23eec
38 Naa247b8d4f8e4296afb9ae93d89285a9
39 sg:journal.1018957
40 schema:name Experimental realization of a one-atom laser in the regime of strong coupling
41 schema:pagination 268
42 schema:productId N1ff6ebbf9b9442999c540d627fd946d2
43 N44946cc3629444f29f8c4164ace813ee
44 N8a94944e6feb48009442734ac349d4be
45 Nddb4559294084c65b394d6c3fd227c31
46 Nfe0dede90dc44993948b3f342852b314
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022559465
48 https://doi.org/10.1038/nature01974
49 schema:sdDatePublished 2019-04-11T12:23
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N7c567d2470214aaca722d83234896de7
52 schema:url https://www.nature.com/articles/nature01974
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N00432d21e7924adf999fc87b8ba11a36 rdf:first sg:person.0645007344.21
57 rdf:rest N5cef275515514fbeb30775bcce57498e
58 N13c8beefaec449cfa5e08f98e5d23eec schema:issueNumber 6955
59 rdf:type schema:PublicationIssue
60 N1af17f704496477eb17ada7f715d63db rdf:first sg:person.01007617336.75
61 rdf:rest N87a24bf5311d473bb9c00c85cf71ba49
62 N1ff6ebbf9b9442999c540d627fd946d2 schema:name nlm_unique_id
63 schema:value 0410462
64 rdf:type schema:PropertyValue
65 N44946cc3629444f29f8c4164ace813ee schema:name readcube_id
66 schema:value 6b7a8d7412cdd328cf1594245017abb0325af5754d714809e4d31d7d13c47bc7
67 rdf:type schema:PropertyValue
68 N5cef275515514fbeb30775bcce57498e rdf:first sg:person.01327141137.36
69 rdf:rest rdf:nil
70 N7c567d2470214aaca722d83234896de7 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N84e75620ccd5484b9dfee1371f1bc90f rdf:first sg:person.0576674144.22
73 rdf:rest N1af17f704496477eb17ada7f715d63db
74 N87a24bf5311d473bb9c00c85cf71ba49 rdf:first sg:person.0751602642.50
75 rdf:rest N00432d21e7924adf999fc87b8ba11a36
76 N8a94944e6feb48009442734ac349d4be schema:name pubmed_id
77 schema:value 13679909
78 rdf:type schema:PropertyValue
79 Naa247b8d4f8e4296afb9ae93d89285a9 schema:volumeNumber 425
80 rdf:type schema:PublicationVolume
81 Nddb4559294084c65b394d6c3fd227c31 schema:name dimensions_id
82 schema:value pub.1022559465
83 rdf:type schema:PropertyValue
84 Nfe0dede90dc44993948b3f342852b314 schema:name doi
85 schema:value 10.1038/nature01974
86 rdf:type schema:PropertyValue
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
91 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
92 rdf:type schema:DefinedTerm
93 sg:journal.1018957 schema:issn 0090-0028
94 1476-4687
95 schema:name Nature
96 rdf:type schema:Periodical
97 sg:person.01007617336.75 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
98 schema:familyName Boca
99 schema:givenName A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007617336.75
101 rdf:type schema:Person
102 sg:person.01327141137.36 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
103 schema:familyName Kimble
104 schema:givenName H. J.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327141137.36
106 rdf:type schema:Person
107 sg:person.0576674144.22 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
108 schema:familyName McKeever
109 schema:givenName J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576674144.22
111 rdf:type schema:Person
112 sg:person.0645007344.21 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
113 schema:familyName Buck
114 schema:givenName J. R.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645007344.21
116 rdf:type schema:Person
117 sg:person.0751602642.50 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
118 schema:familyName Boozer
119 schema:givenName A. D.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751602642.50
121 rdf:type schema:Person
122 sg:pub.10.1007/978-1-4612-1470-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025671152
123 https://doi.org/10.1007/978-1-4612-1470-0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-662-03875-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048690794
126 https://doi.org/10.1007/978-3-662-03875-8
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-662-04103-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108493698
129 https://doi.org/10.1007/978-3-662-04103-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature01939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030933700
132 https://doi.org/10.1038/nature01939
133 rdf:type schema:CreativeWork
134 sg:pub.10.1134/1.1528672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046341158
135 https://doi.org/10.1134/1.1528672
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1025671152 schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1098883481 schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1108493698 schema:CreativeWork
140 https://doi.org/10.1017/cbo9781139644105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698510
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/09500349414550601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032505892
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physreva.46.5944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486451
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreva.48.732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060488066
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.50.4318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060489617
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.51.3257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490154
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreva.53.r3734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491687
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreva.55.3923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492647
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreva.56.1662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492935
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.56.r1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493372
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.58.3210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494193
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreva.60.3267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060495553
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreva.70.023814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039108807
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.72.3973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809241
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.83.1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819854
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.83.4987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029922534
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.90.133602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051734713
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1209/epl/i1997-00150-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234698
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1238/physica.topical.076a00127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064438410
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
179 schema:name Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...