Microwave oscillations of a nanomagnet driven by a spin-polarized current View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-09

AUTHORS

S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, D. C. Ralph

ABSTRACT

The recent discovery that a spin-polarized electrical current can apply a large torque to a ferromagnet, through direct transfer of spin angular momentum, offers the possibility of manipulating magnetic-device elements without applying cumbersome magnetic fields. However, a central question remains unresolved: what type of magnetic motions can be generated by this torque? Theory predicts that spin transfer may be able to drive a nanomagnet into types of oscillatory magnetic modes not attainable with magnetic fields alone, but existing measurement techniques have provided only indirect evidence for dynamical states. The nature of the possible motions has not been determined. Here we demonstrate a technique that allows direct electrical measurements of microwave-frequency dynamics in individual nanomagnets, propelled by a d.c. spin-polarized current. We show that spin transfer can produce several different types of magnetic excitation. Although there is no mechanical motion, a simple magnetic-multilayer structure acts like a nanoscale motor; it converts energy from a d.c. electrical current into high-frequency magnetic rotations that might be applied in new devices including microwave sources and resonators. More... »

PAGES

380

Journal

TITLE

Nature

ISSUE

6956

VOLUME

425

Author Affiliations

Related Patents

  • Magnetic Memory And Method For Writing To Magnetic Memory
  • Spin-Torque Oscillator, A Magnetic Sensor And A Magnetic Recording System
  • Magnetoresistive Radiofrequency Oscillator
  • Fully Integrated Tuneable Spin Torque Device For Generating An Oscillating Signal And Method For Tuning Such Apparatus
  • Microwave Transmission Line Integrated Microwave Generating Element And Microwave Transmission Line Integrated Microwave Detecting Element
  • Hybrid - Memory Cell For By A Spin-Polarized Electron Current Induced Switching And The Write / Reading Process, The Use Of Such A Memory Cell
  • Aggregated Spin-Torque Nano-Oscillators
  • Spintronic Phase Comparator Permitting Direct Phase Probing And Mapping Of Electromagnetic Signals
  • Oscillator
  • Spin Valve Element And Method Of Driving Same
  • Aggregated Spin-Torque Nano-Oscillators
  • Spin Valve Element And Method Of Manufacturing Same
  • Ferromagnetic Thin Wire Element
  • Cpp Reader With Phase Detection Of Magnetic Resonance For Read-Back
  • Negative Resistor Element Using Magnetoresistive Effect
  • Systems, Apparatus, And Methods Of Nonlinear Terahertz (Thz) Magnetic Resonance Measurement
  • High-Frequency Oscillator
  • Ferromagnetic Thin Wire Element
  • Microwave-Assisted Magnetic Recording Head And Magnetic Read/Write Apparatus Using The Same
  • Oscillating Signal Synthesiser
  • Oscillation Detector
  • Magnetoresistive Radiofrequency Oscillator And Method For Generating An Oscillating Signal
  • Three-Dimensional Magnetic Circuits Including Magnetic Connectors
  • Microwave Transmission Line Integrated Microwave Generating Element And Microwave Transmission Line Integrated Microwave Detecting Element
  • Radio-Frequency Oscillator With Spin-Polarised Current
  • Spin-Valve Element And Its Manufacturing Method
  • Amplifier Using Magnetoresistive Element
  • Electromagnetic Wave Detection Systems And Methods
  • Demodulator Of A Frequency-Modulated Electric Signal
  • Creating Spin-Transfer Torque In Oscillators And Memories
  • Electromagnetic Wave Detection Methods And Apparatus
  • Spin Valve Element And Method Of Manufacturing Same
  • Magnetic Recording Head Having Spin Wave Oscillator Which Locally Heats A Recording Track
  • Magnetic Memory Device Having Spin Wave Oscillator Arranged To Heat Magnetic Tunnel Junction Element
  • Negative-Resistance Device With The Use Of Magneto-Resistive Effect
  • Magnetoresistive Radiofrequency Oscillator And Method For Generating An Oscillating Signal
  • Systems And Methods For Rf Magnetic-Field Vector Detection Based On Spin Rectification Effects
  • Information Recording Device Having High-Frequency Field Generating Multilayer Material With A Receded Section Disposed Between Main And Opposing Poles
  • Creating Spin-Transfer Torque In Oscillators And Memories
  • Spin Valve Element, And Its Driving Method
  • High-Frequency Oscillator With A Stacked Film Including A Magnetization Pinned Layer
  • Oscillators And Methods Of Manufacturing And Operating The Same
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01967

    DOI

    http://dx.doi.org/10.1038/nature01967

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006825169

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/14508483


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kiselev", 
            "givenName": "S. I.", 
            "id": "sg:person.0703114454.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703114454.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sankey", 
            "givenName": "J. C.", 
            "id": "sg:person.01013146443.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013146443.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krivorotov", 
            "givenName": "I. N.", 
            "id": "sg:person.0701077715.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701077715.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emley", 
            "givenName": "N. C.", 
            "id": "sg:person.01027364166.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027364166.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schoelkopf", 
            "givenName": "R. J.", 
            "id": "sg:person.0652125751.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652125751.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buhrman", 
            "givenName": "R. A.", 
            "id": "sg:person.015444426174.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444426174.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ralph", 
            "givenName": "D. C.", 
            "id": "sg:person.0731667543.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731667543.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.84.3149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002331710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.3149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002331710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.024404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003318859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.024404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003318859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007328853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-8853(99)00289-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007915887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.196801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008424984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.196801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008424984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.094421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009436499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.094421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009436499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35017512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016807729", 
              "https://doi.org/10.1038/35017512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35017512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016807729", 
              "https://doi.org/10.1038/35017512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.146803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026874009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.146803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026874009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.57.r3213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032688731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.57.r3213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032688731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(57)90010-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036477664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(57)90010-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036477664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.026602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039039642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.026602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039039642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.174402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040175230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.174402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040175230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/59/11/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049002588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050671022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050671022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052840638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052840638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.014407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053023589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.014407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053023589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1362642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057699147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1374230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057700290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1476065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057710338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1506794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057714045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1521578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057715969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1556168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057719364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.1066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060554768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.1066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060554768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060597797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060597797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.4281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.4281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5429.867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062566192"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-09", 
        "datePublishedReg": "2003-09-01", 
        "description": "The recent discovery that a spin-polarized electrical current can apply a large torque to a ferromagnet, through direct transfer of spin angular momentum, offers the possibility of manipulating magnetic-device elements without applying cumbersome magnetic fields. However, a central question remains unresolved: what type of magnetic motions can be generated by this torque? Theory predicts that spin transfer may be able to drive a nanomagnet into types of oscillatory magnetic modes not attainable with magnetic fields alone, but existing measurement techniques have provided only indirect evidence for dynamical states. The nature of the possible motions has not been determined. Here we demonstrate a technique that allows direct electrical measurements of microwave-frequency dynamics in individual nanomagnets, propelled by a d.c. spin-polarized current. We show that spin transfer can produce several different types of magnetic excitation. Although there is no mechanical motion, a simple magnetic-multilayer structure acts like a nanoscale motor; it converts energy from a d.c. electrical current into high-frequency magnetic rotations that might be applied in new devices including microwave sources and resonators.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature01967", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6956", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "425"
          }
        ], 
        "name": "Microwave oscillations of a nanomagnet driven by a spin-polarized current", 
        "pagination": "380", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2082e95de1b3b53dd2ddafbf357de2ce6ee92fd095ba2db6122edda975420192"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "14508483"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01967"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006825169"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01967", 
          "https://app.dimensions.ai/details/publication/pub.1006825169"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87082_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature01967"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01967'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01967'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01967'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01967'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01967 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Ne756a4f3f2074df2845bfb4d0227df0a
    4 schema:citation sg:pub.10.1038/35017512
    5 https://doi.org/10.1016/0022-3697(57)90010-0
    6 https://doi.org/10.1016/0304-8853(96)00062-5
    7 https://doi.org/10.1016/s0304-8853(99)00289-9
    8 https://doi.org/10.1063/1.1362642
    9 https://doi.org/10.1063/1.1374230
    10 https://doi.org/10.1063/1.1476065
    11 https://doi.org/10.1063/1.1506794
    12 https://doi.org/10.1063/1.1521578
    13 https://doi.org/10.1063/1.1556168
    14 https://doi.org/10.1088/0034-4885/59/11/002
    15 https://doi.org/10.1103/physrevb.42.1066
    16 https://doi.org/10.1103/physrevb.54.9353
    17 https://doi.org/10.1103/physrevb.57.r3213
    18 https://doi.org/10.1103/physrevb.62.570
    19 https://doi.org/10.1103/physrevb.66.014407
    20 https://doi.org/10.1103/physrevb.67.094421
    21 https://doi.org/10.1103/physrevb.67.174402
    22 https://doi.org/10.1103/physrevb.68.024404
    23 https://doi.org/10.1103/physrevlett.61.2472
    24 https://doi.org/10.1103/physrevlett.80.4281
    25 https://doi.org/10.1103/physrevlett.84.3149
    26 https://doi.org/10.1103/physrevlett.89.196801
    27 https://doi.org/10.1103/physrevlett.91.067203
    28 https://doi.org/10.1103/physrevlett.91.146803
    29 https://doi.org/10.1103/physrevlett.92.026602
    30 https://doi.org/10.1126/science.285.5429.867
    31 schema:datePublished 2003-09
    32 schema:datePublishedReg 2003-09-01
    33 schema:description The recent discovery that a spin-polarized electrical current can apply a large torque to a ferromagnet, through direct transfer of spin angular momentum, offers the possibility of manipulating magnetic-device elements without applying cumbersome magnetic fields. However, a central question remains unresolved: what type of magnetic motions can be generated by this torque? Theory predicts that spin transfer may be able to drive a nanomagnet into types of oscillatory magnetic modes not attainable with magnetic fields alone, but existing measurement techniques have provided only indirect evidence for dynamical states. The nature of the possible motions has not been determined. Here we demonstrate a technique that allows direct electrical measurements of microwave-frequency dynamics in individual nanomagnets, propelled by a d.c. spin-polarized current. We show that spin transfer can produce several different types of magnetic excitation. Although there is no mechanical motion, a simple magnetic-multilayer structure acts like a nanoscale motor; it converts energy from a d.c. electrical current into high-frequency magnetic rotations that might be applied in new devices including microwave sources and resonators.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N3037deb436484986a0c17dbb7e18969d
    38 N7509e11f1e764cdba97f52d3d6d00e35
    39 sg:journal.1018957
    40 schema:name Microwave oscillations of a nanomagnet driven by a spin-polarized current
    41 schema:pagination 380
    42 schema:productId N1e50e396335b4c2594611b7dc511282f
    43 N3bf5d7c4079c43cc9ac4ce99961d26f5
    44 N54ef134d5c1b4b2dbd3ef9df17fcd995
    45 N902af98ec99d4496be49b6dc03bce5dd
    46 Na1c1113a89744c159f0b4cfb069befcf
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006825169
    48 https://doi.org/10.1038/nature01967
    49 schema:sdDatePublished 2019-04-11T12:21
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N494ee291c379405b84973ff381b308ff
    52 schema:url https://www.nature.com/articles/nature01967
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N1e50e396335b4c2594611b7dc511282f schema:name dimensions_id
    57 schema:value pub.1006825169
    58 rdf:type schema:PropertyValue
    59 N1fe9ff98410f4d169f611841c4d5e91d rdf:first sg:person.01013146443.36
    60 rdf:rest Nf2c5c41af1a6469d9bea155d3e112e9b
    61 N209d2064eb4a40ed96672390c6109274 rdf:first sg:person.0652125751.99
    62 rdf:rest Ndd72e1d42f8f449f9b85d067424198d6
    63 N3037deb436484986a0c17dbb7e18969d schema:issueNumber 6956
    64 rdf:type schema:PublicationIssue
    65 N36ec350978a943089e5a91b69d28793a rdf:first sg:person.0731667543.55
    66 rdf:rest rdf:nil
    67 N3bf5d7c4079c43cc9ac4ce99961d26f5 schema:name readcube_id
    68 schema:value 2082e95de1b3b53dd2ddafbf357de2ce6ee92fd095ba2db6122edda975420192
    69 rdf:type schema:PropertyValue
    70 N494056f951de403292438e1250d1d0d0 rdf:first sg:person.01027364166.35
    71 rdf:rest N209d2064eb4a40ed96672390c6109274
    72 N494ee291c379405b84973ff381b308ff schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N54ef134d5c1b4b2dbd3ef9df17fcd995 schema:name pubmed_id
    75 schema:value 14508483
    76 rdf:type schema:PropertyValue
    77 N7509e11f1e764cdba97f52d3d6d00e35 schema:volumeNumber 425
    78 rdf:type schema:PublicationVolume
    79 N902af98ec99d4496be49b6dc03bce5dd schema:name nlm_unique_id
    80 schema:value 0410462
    81 rdf:type schema:PropertyValue
    82 Na1c1113a89744c159f0b4cfb069befcf schema:name doi
    83 schema:value 10.1038/nature01967
    84 rdf:type schema:PropertyValue
    85 Ndd72e1d42f8f449f9b85d067424198d6 rdf:first sg:person.015444426174.36
    86 rdf:rest N36ec350978a943089e5a91b69d28793a
    87 Ne756a4f3f2074df2845bfb4d0227df0a rdf:first sg:person.0703114454.74
    88 rdf:rest N1fe9ff98410f4d169f611841c4d5e91d
    89 Nf2c5c41af1a6469d9bea155d3e112e9b rdf:first sg:person.0701077715.64
    90 rdf:rest N494056f951de403292438e1250d1d0d0
    91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Physical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Other Physical Sciences
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1018957 schema:issn 0090-0028
    98 1476-4687
    99 schema:name Nature
    100 rdf:type schema:Periodical
    101 sg:person.01013146443.36 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    102 schema:familyName Sankey
    103 schema:givenName J. C.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013146443.36
    105 rdf:type schema:Person
    106 sg:person.01027364166.35 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    107 schema:familyName Emley
    108 schema:givenName N. C.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027364166.35
    110 rdf:type schema:Person
    111 sg:person.015444426174.36 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    112 schema:familyName Buhrman
    113 schema:givenName R. A.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444426174.36
    115 rdf:type schema:Person
    116 sg:person.0652125751.99 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    117 schema:familyName Schoelkopf
    118 schema:givenName R. J.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652125751.99
    120 rdf:type schema:Person
    121 sg:person.0701077715.64 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    122 schema:familyName Krivorotov
    123 schema:givenName I. N.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701077715.64
    125 rdf:type schema:Person
    126 sg:person.0703114454.74 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    127 schema:familyName Kiselev
    128 schema:givenName S. I.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703114454.74
    130 rdf:type schema:Person
    131 sg:person.0731667543.55 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    132 schema:familyName Ralph
    133 schema:givenName D. C.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731667543.55
    135 rdf:type schema:Person
    136 sg:pub.10.1038/35017512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016807729
    137 https://doi.org/10.1038/35017512
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/0022-3697(57)90010-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036477664
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/s0304-8853(99)00289-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007915887
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.1362642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057699147
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1063/1.1374230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700290
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1063/1.1476065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057710338
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1063/1.1506794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057714045
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1063/1.1521578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057715969
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1063/1.1556168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057719364
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1088/0034-4885/59/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049002588
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevb.42.1066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554768
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevb.57.r3213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032688731
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevb.62.570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597797
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevb.66.014407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053023589
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevb.67.094421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009436499
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevb.67.174402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040175230
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevb.68.024404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003318859
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physrevlett.80.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817457
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrevlett.89.196801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008424984
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/physrevlett.91.067203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050671022
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physrevlett.91.146803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026874009
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1103/physrevlett.92.026602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039039642
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
    190 rdf:type schema:CreativeWork
    191 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    192 schema:name Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA
    193 rdf:type schema:Organization
    194 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    195 schema:name Cornell University, Ithaca, New York 14853, USA
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...