Surface plasmon subwavelength optics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08

AUTHORS

William L. Barnes, Alain Dereux, Thomas W. Ebbesen

ABSTRACT

Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics. More... »

PAGES

824-830

Journal

TITLE

Nature

ISSUE

6950

VOLUME

424

Related Patents

  • Plasmon Multiplexing
  • Two-Dimensionally Periodic, Color-Filtering Grid
  • Laser Material Processing System
  • Laser System For Output Manipulation
  • High Resolution Structured Illumination Microscopy
  • Plasmonic Device, System, And Methods
  • Method And Apparatus For Enhancing Plasmon Polariton And Phonon Polariton Resonance
  • Optical Filter
  • Surface-Plasmon-Assisted Optical Frequency Conversion
  • Plasmon Photocatalysis
  • Calibration Slide For Digital Pathology
  • Plasmon Filter
  • Graphene Plasmonic Communication Link
  • Tapered Optical Needle
  • Ultra-Wide Band Slow Light Structure Using Plasmonic Graded Grating Structures
  • Fluorescence Calibration Slide
  • Can Be Used For The Optical Data Storage, The Optical Microscopy, The Biomedical Detections And The Lithography To Perform The Extra Optical Resolutions Beyond The Diffraction Limitation
  • Flow-Based Enhancement Of Specificity For Label-Free Biochemical Assays
  • Sensor Chip, Sensor Cartridge, And Analysis Apparatus
  • Rhodium Film With Thin Template Layer And Its Application To A Thermally Assisted Magnetic Recording (Tamr) Writer
  • Chip-Scale Optical Spectrum Analyzers With Enhanced Resolution
  • Plasmon Switch
  • Localization Of Near-Field Resonances In Bowtie Antennae: Influence Of Adhesion Layers
  • Graphene Plasmonic Communication Link
  • Fast All-Optical Switch
  • Plasmon Switch
  • Photonic Device Including Semiconductor Structure Having Doped Region With Array Of Subwavelengh Recesses
  • Two-Dimensionally Periodic, Colour-Filtering Grating
  • Safety Element With Multicoloured Image
  • Display Device Having Plasmonic Color Filters And Photovoltaic Capabilities
  • Spectrum Filtering For Visual Displays And Imaging Having Minimal Angle Dependence
  • Sensor Chip, Sensor Cartridge, And Analysis Apparatus
  • Surface Plasmon Optical Modulator
  • Mesoscale Pyramids, Hole Arrays And Methods Of Preparation
  • Ultra-Sensitive Force Sensing Based On Evanescent Light
  • Chemical And Biological Sensing Using Metallic Particles In Amplifying And Absorbing Media
  • Sensor Chip, Sensor Cartridge, And Analysis Apparatus
  • Metal-Dielectric Eutectic Material For Use In Plasmonics
  • Graphene Plasmonic Communication Link
  • Waveguide, Light Captation Device, And Method For Manufacturing Waveguide
  • Plasmon Photocatalysis
  • Wavelength Selective Metallic Embossing Nanostructure
  • Nanoscale Array Structures Suitable For Surface Enhanced Raman Scattering And Methods Related Thereto
  • Metallic Nano-Optic Lenses And Beam Shaping Devices
  • Method And System For Nanoscale Data Recording
  • Surface-Plasmon-Assisted Optical Frequency Conversion
  • Method Of Making Foraminous Microstructures
  • Plasmon Switch
  • Interconnect Structure And Method For On-Chip Information Transfer
  • All Optical Nanoscale Sensor
  • Plasmon Tomography
  • System, Method And Apparatus For Rf Directed Energy
  • Nanoscale Structures On Optical Fiber For Surface Enhanced Raman Scattering And Methods Related Thereto
  • Charge-Discharge Electro-Optical Microring Modulator
  • Subwavelength Aperture Monopulse Conformal Antenna
  • Silicon-Compatible Surface Plasmon Optical Elements
  • Sensor Chip, Sensor Cartridge, And Analysis Apparatus
  • Rhir Alloy Near-Field Transducer With Rh Template Layer In A Thermally Assisted Magnetic Recording (Tamr) Application
  • Plasmon Router
  • Terahertz Radiation Detector, Focal Plane Array Incorporating Terahertz Detector, Multispectral Metamaterial Absorber, And Combined Optical Filter And Terahertz Absorber
  • Security Element Having A Color-Effect-Producing Structure
  • Substrate For The Generation Of Surface Plasmons And Surface Plasmon Polaritons By Means Of An Excitation Radiation, Method For The Production Of The Substrate, And Uses Of The Substrate
  • Plasmon Tomography
  • Dye And Pigment-Free Structural Colors And Angle-Insensitive Spectrum Filters
  • Optical Element
  • Optical Switch And Optical Logic Device
  • Optical Sensing Based On Surface Plasmon Resonances In Nanostructures
  • Fully Integrated Cmos-Compatible Photodetector With Color Selectivity And Intrinsic Gain
  • System And Method For Color Imaging With Integrated Plasmonic Color Filters
  • Control System And Apparatus For Use With Ultra-Fast Laser
  • Thz Distributed Detectors And Arrays
  • Graphene Plasmonic Communication Link
  • Magnetic Spin Based Photonic/Plasmonic Devices
  • Substrate For The Generation Of Surface Plasmons And Surface Polarites By Means Of An Excitation Radiation, Method For The Production Of The Substrate And Uses Of The Substrate
  • Plasmon-Enhanced Fluorescence Spectroscopy Imaging By Multi-Resonant Nanostructures
  • Plasmon Tomography
  • Security Element Having A Structure Creating Colour Effects
  • Device For Generating Electrical Energy From Heat Sources
  • Micron-Size Plasmonic Color Sorter
  • A New Hybrid Nanoparticle, Referred To As A Nanorice Particle, Comprises A Prolate Spheroid-Shaped Core Of Hematite Confined By A Shell Of Gold; Surface Plasmon Resonance Sensitivity Of > 600 Nm Riu-1; Nanodetectors; Improved Tunability With Well-Defined Local Field Enhancement
  • Laser Amplification System
  • Methods For Manufacturing Nano-Gap And Angstrom-Gap Articles
  • Metallic Nano-Optic Lenses And Beam Shaping Devices
  • Plasmon Resonant Cavities In Vertical Nanowire Arrays
  • Plasmon Gate
  • Near-Field Transducer With Au Nano Rod
  • Security Element With Coloreffective Grid
  • Plasmon Gate
  • Ultrafast Light Emitting Diodes For Optical Wireless Communications
  • Apparatus And Methods For Generating Electromagnetic Radiation
  • Nanostructured Spectral Filter And Image Sensor
  • Plasmon Filter
  • Plasmon Photocatalysis
  • Plasmon Tomography
  • Effect Of The Plasmonic Dispersion Relation On The Transmission Properties Of Subwavelength Holes
  • Optical Switch And Optical Logic Device
  • Plasmon Multiplexing
  • Waveguide, Light Collection Device And Method For Producing A Waveguide
  • Ph-Controlled Photosynthesis Of Silver Nanoprisms
  • Highly Efficent On-Chip Direct Electronic-Plasmonic Transducers
  • Slider, Integrated Slider, And Hybrid Storage Device
  • An Out-Of-Plane Open-Loop Accelerometer Based On Surface Plasmon And Corresponding Method
  • Ph-Controlled Photosynthesis Of Silver Nanoprisms
  • Optical Apparatus, Optical Detector, Optical Modulator, Imaging Apparatus, And Camera
  • Plasmonic Device For Modulation And Amplification Of Plasmonic Signals
  • Methods And Systems For Assembly Of Particle Superstructures
  • Plasmon Photocatalysis
  • Plasmonic Nanocavity Devices And Methods For Enhanced Efficiency In Organic Photovoltaic Cells
  • Subwavelength Aperture Monopulse Conformal Antenna
  • Plasmon Photocatalysis
  • Method And Apparatus For Detecting Em Energy Using Surface Plasmon Polaritons
  • Plasmon Photocatalysis
  • Surface Wave Assisted Structures And Systems
  • Graphene Plasmonic Communication Link
  • Fresnel Antenna
  • Optical Filter
  • Electromagnetic Wave Receiving Antenna
  • Mesoscale Pyramids, Hole Arrays And Methods Of Preparation
  • Health Monitoring System With A Waveguide To Guide A Wave From A Power Source
  • Ultrafast Light Emitting Diodes For Optical Wireless Communications
  • Plasmon Tomography
  • Plasmon Router
  • Waveguide Embedded Plasmon Laser With Multiplexing And Electrical Modulation
  • Plasmon Multiplexing
  • Multispectral Plasmonic Crystal Sensors
  • Solid-State Imaging Device
  • Fluorescence Calibration Slide
  • Surface Plasmon Polariton Modulation
  • Near-Field Transducer With Separated Bottom Au Layer
  • Medical Sensor Having A Nanoscale Tapered Waveguide For Spectroscopy-Based Analysis Of Fluid
  • Nonconcentric Nanoshells With Offset Core In Relation To Shell And Method Of Using The Same
  • Graphene-Based Semiconductor Chip For Tunable Thz Plasmon Generation
  • Plasmon Gate
  • Two-Dimensionally Periodic, Color-Filtering Grating
  • Single Metal Crystals
  • Localization Of Near-Field Resonances In Bowtie Antennae: Influence Of Adhesion Layers
  • Surface-Plasmon Detector Based On A Field-Effect Transistor
  • Nanoscale Array Structures Suitable For Surface Enhanced Raman Scattering And Methods Related Thereto
  • Substrate For The Generation Of Surface Plasmons And Surface Plasmon Polaritons By Means Of An Excitation Radiation, Method For The Production Of The Substrate, And Uses Of The Substrate
  • Optical Filter
  • Surface Plasmon Enhanced Raman Spectroscopy
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01937

    DOI

    http://dx.doi.org/10.1038/nature01937

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029876312

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12917696


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Physics, University of Exeter, EX4 4QL, UK", 
              "id": "http://www.grid.ac/institutes/grid.8391.3", 
              "name": [
                "School of Physics, University of Exeter, EX4 4QL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barnes", 
            "givenName": "William L.", 
            "id": "sg:person.01151056060.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151056060.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Physique, Universit\u00e9 de Bourgogne, BP 47870, F-21078, Dijon, France", 
              "id": "http://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Laboratoire de Physique, Universit\u00e9 de Bourgogne, BP 47870, F-21078, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dereux", 
            "givenName": "Alain", 
            "id": "sg:person.01207335206.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207335206.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ISIS, Universit\u00e9 Louis Pasteur, BP 70028, F-67083, Strasbourg Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.483413.9", 
              "name": [
                "ISIS, Universit\u00e9 Louis Pasteur, BP 70028, F-67083, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ebbesen", 
            "givenName": "Thomas W.", 
            "id": "sg:person.01014615471.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014615471.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature00869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027380198", 
              "https://doi.org/10.1038/nature00869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037112953", 
              "https://doi.org/10.1038/35570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01391532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007942321", 
              "https://doi.org/10.1007/bf01391532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025322991", 
              "https://doi.org/10.1038/nmat852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-09109-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027780347", 
              "https://doi.org/10.1007/978-3-662-09109-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-08", 
        "datePublishedReg": "2003-08-01", 
        "description": "Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons\u2014in particular their interaction with light\u2014can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature01937", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6950", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "424"
          }
        ], 
        "keywords": [
          "surface plasmons", 
          "subwavelength optics", 
          "photonic circuits", 
          "photonic devices", 
          "light generation", 
          "plasmons", 
          "optics", 
          "metal surface", 
          "length scales", 
          "data storage", 
          "photonics", 
          "surface", 
          "new type", 
          "waves", 
          "microscopy", 
          "light", 
          "devices", 
          "conductors", 
          "properties", 
          "potential", 
          "structure", 
          "interaction", 
          "generation", 
          "circuit", 
          "scale", 
          "types", 
          "storage"
        ], 
        "name": "Surface plasmon subwavelength optics", 
        "pagination": "824-830", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029876312"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01937"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12917696"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01937", 
          "https://app.dimensions.ai/details/publication/pub.1029876312"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_361.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature01937"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01937'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01937'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01937'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01937'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      60 URIs      45 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01937 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:03
    4 anzsrc-for:0306
    5 schema:author Na255505bdf9b48fea29db8fc7f9ad946
    6 schema:citation sg:pub.10.1007/978-3-662-09109-8
    7 sg:pub.10.1007/bf01391532
    8 sg:pub.10.1038/35570
    9 sg:pub.10.1038/nature00869
    10 sg:pub.10.1038/nmat852
    11 schema:datePublished 2003-08
    12 schema:datePublishedReg 2003-08-01
    13 schema:description Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.
    14 schema:genre article
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N4c82aefc0c4240e38deb0d298fa61e08
    17 Na14f9c9fa4fb4db7b47ca3b9d9110ff2
    18 sg:journal.1018957
    19 schema:keywords circuit
    20 conductors
    21 data storage
    22 devices
    23 generation
    24 interaction
    25 length scales
    26 light
    27 light generation
    28 metal surface
    29 microscopy
    30 new type
    31 optics
    32 photonic circuits
    33 photonic devices
    34 photonics
    35 plasmons
    36 potential
    37 properties
    38 scale
    39 storage
    40 structure
    41 subwavelength optics
    42 surface
    43 surface plasmons
    44 types
    45 waves
    46 schema:name Surface plasmon subwavelength optics
    47 schema:pagination 824-830
    48 schema:productId N47e449bb8f36430db0efff41dd2a6aea
    49 N9acc3130fac943e5a7d8a02a45dde13c
    50 Nfa89924e60a64a7abd4e8792a1d34152
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876312
    52 https://doi.org/10.1038/nature01937
    53 schema:sdDatePublished 2022-12-01T06:23
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N6c41906075524aaab7bab49a47959d88
    56 schema:url https://doi.org/10.1038/nature01937
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N47e449bb8f36430db0efff41dd2a6aea schema:name doi
    61 schema:value 10.1038/nature01937
    62 rdf:type schema:PropertyValue
    63 N4c82aefc0c4240e38deb0d298fa61e08 schema:issueNumber 6950
    64 rdf:type schema:PublicationIssue
    65 N659a53dc869c46049664d0c0f939a983 rdf:first sg:person.01207335206.19
    66 rdf:rest Na7f6971161da4fe28a3be20d2fcf9224
    67 N6c41906075524aaab7bab49a47959d88 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N9acc3130fac943e5a7d8a02a45dde13c schema:name dimensions_id
    70 schema:value pub.1029876312
    71 rdf:type schema:PropertyValue
    72 Na14f9c9fa4fb4db7b47ca3b9d9110ff2 schema:volumeNumber 424
    73 rdf:type schema:PublicationVolume
    74 Na255505bdf9b48fea29db8fc7f9ad946 rdf:first sg:person.01151056060.35
    75 rdf:rest N659a53dc869c46049664d0c0f939a983
    76 Na7f6971161da4fe28a3be20d2fcf9224 rdf:first sg:person.01014615471.74
    77 rdf:rest rdf:nil
    78 Nfa89924e60a64a7abd4e8792a1d34152 schema:name pubmed_id
    79 schema:value 12917696
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Physical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Optical Physics
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Chemical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Physical Chemistry (incl. Structural)
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1018957 schema:issn 0028-0836
    94 1476-4687
    95 schema:name Nature
    96 schema:publisher Springer Nature
    97 rdf:type schema:Periodical
    98 sg:person.01014615471.74 schema:affiliation grid-institutes:grid.483413.9
    99 schema:familyName Ebbesen
    100 schema:givenName Thomas W.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014615471.74
    102 rdf:type schema:Person
    103 sg:person.01151056060.35 schema:affiliation grid-institutes:grid.8391.3
    104 schema:familyName Barnes
    105 schema:givenName William L.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151056060.35
    107 rdf:type schema:Person
    108 sg:person.01207335206.19 schema:affiliation grid-institutes:grid.5613.1
    109 schema:familyName Dereux
    110 schema:givenName Alain
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207335206.19
    112 rdf:type schema:Person
    113 sg:pub.10.1007/978-3-662-09109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780347
    114 https://doi.org/10.1007/978-3-662-09109-8
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01391532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007942321
    117 https://doi.org/10.1007/bf01391532
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1038/35570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037112953
    120 https://doi.org/10.1038/35570
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1038/nature00869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027380198
    123 https://doi.org/10.1038/nature00869
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/nmat852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025322991
    126 https://doi.org/10.1038/nmat852
    127 rdf:type schema:CreativeWork
    128 grid-institutes:grid.483413.9 schema:alternateName ISIS, Université Louis Pasteur, BP 70028, F-67083, Strasbourg Cedex, France
    129 schema:name ISIS, Université Louis Pasteur, BP 70028, F-67083, Strasbourg Cedex, France
    130 rdf:type schema:Organization
    131 grid-institutes:grid.5613.1 schema:alternateName Laboratoire de Physique, Université de Bourgogne, BP 47870, F-21078, Dijon, France
    132 schema:name Laboratoire de Physique, Université de Bourgogne, BP 47870, F-21078, Dijon, France
    133 rdf:type schema:Organization
    134 grid-institutes:grid.8391.3 schema:alternateName School of Physics, University of Exeter, EX4 4QL, UK
    135 schema:name School of Physics, University of Exeter, EX4 4QL, UK
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...