Universal alignment of hydrogen levels in semiconductors, insulators and solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06

AUTHORS

Chris G. Van de Walle, J. Neugebauer

ABSTRACT

Hydrogen strongly affects the electronic and structural properties of many materials. It can bind to defects or to other impurities, often eliminating their electrical activity: this effect of defect passivation is crucial to the performance of many photovoltaic and electronic devices. A fuller understanding of hydrogen in solids is required to support development of improved hydrogen-storage systems, proton-exchange membranes for fuel cells, and high-permittivity dielectrics for integrated circuits. In chemistry and in biological systems, there have also been many efforts to correlate proton affinity and deprotonation with host properties. Here we report a systematic theoretical study (based on ab initio methods) of hydrogen in a wide range of hosts, which reveals the existence of a universal alignment for the electronic transition level of hydrogen in semiconductors, insulators and even aqueous solutions. This alignment allows the prediction of the electrical activity of hydrogen in any host material once some basic information about the band structure of that host is known. We present a physical explanation that connects the behaviour of hydrogen to the line-up of electronic band structures at heterojunctions. More... »

PAGES

626

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01665

DOI

http://dx.doi.org/10.1038/nature01665

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044109649

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12789334


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Palo Alto Research Center", 
          "id": "https://www.grid.ac/institutes/grid.482243.b", 
          "name": [
            "*Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van de Walle", 
        "givenName": "Chris G.", 
        "id": "sg:person.01067702447.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067702447.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u2020Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neugebauer", 
        "givenName": "J.", 
        "id": "sg:person.07765066717.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07765066717.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35104634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000018115", 
          "https://doi.org/10.1038/35104634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000018115", 
          "https://doi.org/10.1038/35104634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(97)00117-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007324284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3951(200111)228:1<303::aid-pssb303>3.0.co;2-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017581651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-5729(95)00008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032947595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00425a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055731462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1313793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057693496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1432742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057706328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.95351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058135490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/15/27/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058960041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.1738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.1738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.4874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.4874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.5621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.5621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.1871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.1871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.155324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.155324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.045504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.045504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.086403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.086403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/proc-449-917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067937067"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06", 
    "datePublishedReg": "2003-06-01", 
    "description": "Hydrogen strongly affects the electronic and structural properties of many materials. It can bind to defects or to other impurities, often eliminating their electrical activity: this effect of defect passivation is crucial to the performance of many photovoltaic and electronic devices. A fuller understanding of hydrogen in solids is required to support development of improved hydrogen-storage systems, proton-exchange membranes for fuel cells, and high-permittivity dielectrics for integrated circuits. In chemistry and in biological systems, there have also been many efforts to correlate proton affinity and deprotonation with host properties. Here we report a systematic theoretical study (based on ab initio methods) of hydrogen in a wide range of hosts, which reveals the existence of a universal alignment for the electronic transition level of hydrogen in semiconductors, insulators and even aqueous solutions. This alignment allows the prediction of the electrical activity of hydrogen in any host material once some basic information about the band structure of that host is known. We present a physical explanation that connects the behaviour of hydrogen to the line-up of electronic band structures at heterojunctions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature01665", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6940", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "423"
      }
    ], 
    "name": "Universal alignment of hydrogen levels in semiconductors, insulators and solutions", 
    "pagination": "626", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d21bffb1227d080d2dd893f1d2ea6c92e37c98d0d36bd1347778bc5cf10f873b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12789334"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01665"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044109649"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01665", 
      "https://app.dimensions.ai/details/publication/pub.1044109649"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature01665"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01665'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01665'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01665'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01665'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01665 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N60fe148356ba43c395595687c97c1f04
4 schema:citation sg:pub.10.1038/35104607
5 sg:pub.10.1038/35104634
6 https://doi.org/10.1002/1521-3951(200111)228:1<303::aid-pssb303>3.0.co;2-a
7 https://doi.org/10.1016/0167-5729(95)00008-9
8 https://doi.org/10.1016/s0010-4655(97)00117-3
9 https://doi.org/10.1021/ja00425a002
10 https://doi.org/10.1063/1.1313793
11 https://doi.org/10.1063/1.1432742
12 https://doi.org/10.1063/1.95351
13 https://doi.org/10.1088/0022-3719/15/27/003
14 https://doi.org/10.1103/physrevb.26.1738
15 https://doi.org/10.1103/physrevb.30.4874
16 https://doi.org/10.1103/physrevb.34.5621
17 https://doi.org/10.1103/physrevb.39.1871
18 https://doi.org/10.1103/physrevb.67.155324
19 https://doi.org/10.1103/physrevlett.58.2367
20 https://doi.org/10.1103/physrevlett.83.372
21 https://doi.org/10.1103/physrevlett.85.1012
22 https://doi.org/10.1103/physrevlett.88.045504
23 https://doi.org/10.1103/physrevlett.89.086403
24 https://doi.org/10.1557/proc-449-917
25 schema:datePublished 2003-06
26 schema:datePublishedReg 2003-06-01
27 schema:description Hydrogen strongly affects the electronic and structural properties of many materials. It can bind to defects or to other impurities, often eliminating their electrical activity: this effect of defect passivation is crucial to the performance of many photovoltaic and electronic devices. A fuller understanding of hydrogen in solids is required to support development of improved hydrogen-storage systems, proton-exchange membranes for fuel cells, and high-permittivity dielectrics for integrated circuits. In chemistry and in biological systems, there have also been many efforts to correlate proton affinity and deprotonation with host properties. Here we report a systematic theoretical study (based on ab initio methods) of hydrogen in a wide range of hosts, which reveals the existence of a universal alignment for the electronic transition level of hydrogen in semiconductors, insulators and even aqueous solutions. This alignment allows the prediction of the electrical activity of hydrogen in any host material once some basic information about the band structure of that host is known. We present a physical explanation that connects the behaviour of hydrogen to the line-up of electronic band structures at heterojunctions.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N849cf3c2a75742ceb6c87c20be2d039f
32 N871dcf054b674450aca969f174bfb884
33 sg:journal.1018957
34 schema:name Universal alignment of hydrogen levels in semiconductors, insulators and solutions
35 schema:pagination 626
36 schema:productId N54a166cd83e240b1ad214a49d006733c
37 Nbfbbcdb2f3244825bf376677bc9c4216
38 Nc6cdf67a9a96450d8f75b4e74e63a791
39 Nee696885b6f44e70b417fc0691e4506b
40 Nf0f97b8d74ea4835bb617d1668023f07
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109649
42 https://doi.org/10.1038/nature01665
43 schema:sdDatePublished 2019-04-11T12:25
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ned779e60ea8e4e86b42b160d0c78e0f1
46 schema:url https://www.nature.com/articles/nature01665
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N54a166cd83e240b1ad214a49d006733c schema:name readcube_id
51 schema:value d21bffb1227d080d2dd893f1d2ea6c92e37c98d0d36bd1347778bc5cf10f873b
52 rdf:type schema:PropertyValue
53 N60fe148356ba43c395595687c97c1f04 rdf:first sg:person.01067702447.37
54 rdf:rest N91b50476781e4774a9ead256581bc986
55 N849cf3c2a75742ceb6c87c20be2d039f schema:volumeNumber 423
56 rdf:type schema:PublicationVolume
57 N871dcf054b674450aca969f174bfb884 schema:issueNumber 6940
58 rdf:type schema:PublicationIssue
59 N8803a5a7103e46c688fd70f3330f36fe schema:name †Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany
60 rdf:type schema:Organization
61 N91b50476781e4774a9ead256581bc986 rdf:first sg:person.07765066717.11
62 rdf:rest rdf:nil
63 Nbfbbcdb2f3244825bf376677bc9c4216 schema:name pubmed_id
64 schema:value 12789334
65 rdf:type schema:PropertyValue
66 Nc6cdf67a9a96450d8f75b4e74e63a791 schema:name dimensions_id
67 schema:value pub.1044109649
68 rdf:type schema:PropertyValue
69 Ned779e60ea8e4e86b42b160d0c78e0f1 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nee696885b6f44e70b417fc0691e4506b schema:name nlm_unique_id
72 schema:value 0410462
73 rdf:type schema:PropertyValue
74 Nf0f97b8d74ea4835bb617d1668023f07 schema:name doi
75 schema:value 10.1038/nature01665
76 rdf:type schema:PropertyValue
77 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
78 schema:name Chemical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Chemistry (incl. Structural)
82 rdf:type schema:DefinedTerm
83 sg:journal.1018957 schema:issn 0090-0028
84 1476-4687
85 schema:name Nature
86 rdf:type schema:Periodical
87 sg:person.01067702447.37 schema:affiliation https://www.grid.ac/institutes/grid.482243.b
88 schema:familyName Van de Walle
89 schema:givenName Chris G.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067702447.37
91 rdf:type schema:Person
92 sg:person.07765066717.11 schema:affiliation N8803a5a7103e46c688fd70f3330f36fe
93 schema:familyName Neugebauer
94 schema:givenName J.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07765066717.11
96 rdf:type schema:Person
97 sg:pub.10.1038/35104607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025421157
98 https://doi.org/10.1038/35104607
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/35104634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000018115
101 https://doi.org/10.1038/35104634
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/1521-3951(200111)228:1<303::aid-pssb303>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017581651
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0167-5729(95)00008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032947595
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0010-4655(97)00117-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007324284
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/ja00425a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055731462
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.1313793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057693496
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.1432742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057706328
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.95351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058135490
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0022-3719/15/27/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058960041
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.26.1738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531096
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.30.4874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060536222
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.34.5621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541271
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.39.1871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549075
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.67.155324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060606259
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.58.2367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795070
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.83.372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820277
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.85.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821617
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.88.045504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824333
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.89.086403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825219
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1557/proc-449-917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067937067
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.482243.b schema:alternateName Palo Alto Research Center
142 schema:name *Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...