Wnt proteins are lipid-modified and can act as stem cell growth factors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04-27

AUTHORS

Karl Willert, Jeffrey D. Brown, Esther Danenberg, Andrew W. Duncan, Irving L. Weissman, Tannishtha Reya, John R. Yates, Roel Nusse

ABSTRACT

Wnt signalling is involved in numerous events in animal development1, including the proliferation of stem cells2 and the specification of the neural crest3. Wnt proteins are potentially important reagents in expanding specific cell types, but in contrast to other developmental signalling molecules such as hedgehog proteins and the bone morphogenetic proteins, Wnt proteins have never been isolated in an active form. Although Wnt proteins are secreted from cells4,5,6,7, secretion is usually inefficient8 and previous attempts to characterize Wnt proteins have been hampered by their high degree of insolubility. Here we have isolated active Wnt molecules, including the product of the mouse Wnt3a gene. By mass spectrometry, we found the proteins to be palmitoylated on a conserved cysteine. Enzymatic removal of the palmitate or site-directed and natural mutations of the modified cysteine result in loss of activity, and indicate that the lipid is important for signalling. The purified Wnt3a protein induces self-renewal of haematopoietic stem cells, signifying its potential use in tissue engineering. More... »

PAGES

448-452

Journal

TITLE

Nature

ISSUE

6938

VOLUME

423

Related Patents

  • Wnt Antagonist And Methods Of Treatment And Screening
  • Method For Treating Inflammation By Administering A Compound Which Binds Ldl-Receptor-Related Protein (Lrp) Ligand Binding Domain
  • Methods And Compositions Involving Mir-135b For Distinguishing Pancreatic Cancer From Benign Pancreatic Disease
  • Compositions And Methods For The Stimulation Or Enhancement Of Bone Formation And The Self-Renewal Of Cells
  • Wnt Pathway Modulators
  • Methods Of Treating Cancer By Administering A Soluble Receptor Comprising A Human Fc Domain And The Fri Domain From Human Frizzled Receptor
  • Methods For Compact Aggregation Of Dermal Cells
  • Use Of Cell Membrane-Bound Signaling Factors
  • Pharmaceutical Composition Comprising Monensin For Treating Of Diseases Associated With Deregulated Wnt Signaling Pathway
  • Wnt Compositions And Methods Of Use Thereof
  • Methods And Compositions Involving Microrna
  • Micrornas Differentially Expressed In Cervical Cancer And Uses Thereof
  • Mutated Hoxb4 Proteins With Improved Stability, And Methods Of Use Thereof
  • Method For Producing Wnt Protein And Method For Storing Wnt Protein
  • Compounds And Assays For Controlling Wnt Activity
  • Methods And Compositions Involving Mirna And Mirna Inhibitor Molecules
  • Nucleic Acid Molecules Encoding Soluble Frizzled (Fzd) Receptors
  • Methods Of Use For An Antibody Against Human Frizzled Receptors 1, 2. 5, 7 Or 8
  • Methods And Monitoring Of Treatment With A Wnt Pathway Inhibitor
  • Cervical Cancer Organoids
  • Determining The Capability Of A Test Compound To Affect Solid Tumor Stem Cells
  • Wnt Compositions And Methods Of Use Thereof
  • Liver Organoid, Uses Thereof And Culture Method For Obtaining Them
  • Methods And Compositions Involving Microrna
  • Use Of Cell Membrane-Bound Signaling Factors
  • Ex Vivo Expansion Of Human Hematopoietic Stem Cells
  • Use Of Cell Membrane-Bound Signaling Factors
  • Methods And Compositions Involving Mirna And Mirna Inhibitor Molecules
  • Injectable Formulations For Organ Augmentation
  • Wnt Pathway Modulators
  • Methods And Compositions Involving Microrna
  • Method For Producing Wnt Protein And Method For Storing Wnt Protein
  • Anti-Cancer Drug Screening Method Using Rorα
  • Methods And Compositions Involving Microrna
  • Frizzled-Binding Agents And Their Use In Screening For Wnt Inhibitors
  • Methods And Compositions Involving Mirna And Mirna Inhibitor Molecules
  • Cervical Cancer Organoids
  • Methods For Expansion And Analysis Of Cultured Hematopoietic Stem Cells
  • Methods For Compact Aggregation Of Dermal Cells
  • Compositions And Methods For Diagnosing And Treating Cancer
  • Methods And Compositions For Isolating, Enriching, And/Or Labeling Mirna Molecules And For Preparing And Using Arrays Or Other Detection Techniques For Mirna Analysis. Moreover, The Present Invention Concerns Methods And Compositions For Generating Mirna Profiles And Employing Such Profiles
  • Method For Treating Cancer Using An Antibody That Inhibits Notch4 Signaling
  • Culturing Of Mesenchymal Stem Cells
  • Maleimide Derivatives As Modulators Of Wnt Pathway
  • Sfrp Expression Enhancing Agent
  • Methods For Expansion And Analysis Of Cultured Hematopoietic Stem Cells
  • Cultured Hematopoietic Stem Cells And Method For Expansion And Analysis Thereof
  • Wnt Pathway Stimulation In Reprogramming Somatic Cells
  • Administering Synthetic Mirna Or Inhibitor As An Anticarcinogenic Agent That Protects Noncancerous Cells And Is Effective Against Chemo- And Radiation Resistant Cancer Cells; Breast, Colon, Thyroid And Lung Cancers; Antimetastasis Agents
  • Monoclonal Antibodies Against Frizzled
  • Wnt7a Compositions And Method Of Using The Same
  • Use Of Compositions Comprising Dkk2 And Fragments Thereof For The Stimulation Or Enhancement Of Bone Formation
  • Compositions And Methods Related To Mirna Modulation Of Neovascularization Or Angiogenesis
  • Compositions And Methods Related To Mirna Modulation Of Neovascularization Or Angiogenesis
  • Methods Of Treating Neuroendocrine Tumors Using Frizzled-Binding Agents
  • Wnt/Sfrp Complexes, Wnt-Containing Compositions, Wnt-Expressing Cells, And Methods Of Making, Purifying, And Using Same
  • Determining The Capability Of A Test Compound To Affect Solid Tumor Stem Cells
  • Culture Medium For Epithelial Stem Cells And Organoids Comprising The Stem Cells
  • Micrornas Differentially Expressed In Cervical Cancer And Uses Thereof
  • Bioactive Renal Cells
  • Compositions And Methods For Treating And Diagnosing Pancreatic Cancer
  • Methods Of Using The Fri Domain Of Human Frizzled Receptor For Inhibiting Wnt Signaling In A Tumor Or Tumor Cell
  • Wnt Compositions And Therapeutic Uses Of Such Compositions
  • Liver Organoid, Uses Thereof And Culture Method For Obtaining Them
  • Met-Binding Agents And Uses Thereof
  • Method For Treating Crohn's Disease Or Ulcerative Colitis By Administering A Compound Which Binds Ldl-Receptor-Related Protein (Lrp) Ligand Binding Domain
  • Culture Medium For Epithelial Stem Cells And Organoids Comprising The Stem Cells
  • Frizzled-Binding Agents And Uses Thereof
  • Methods And Compositions Involving Mirna And Mirna Inhibitor Molecules
  • Compositions And Methods For Bone Formation And Remodeling
  • Wnt Pathway Stimulation In Reprogramming Somatic Cells
  • Wnt Compositions And Methods Of Use Thereof
  • Antibodies Against Human Fzd5 And Fzd8
  • Compositions And Methods For Bone Formation And Remodeling
  • Synthetic Lethality And The Treatment Of Cancer
  • Methods And Compositions Involving Mirna And Mirna Inhibitor Molecules
  • Compositions And Methods For Modulating Stem Cells And Uses Thereof
  • Compositions And Methods For Treating And Diagnosing Pancreatic Cancer
  • Culture Medium For Epithelial Stem Cells And Organoids Comprising The Stem Cells
  • Using Nutrient Broth Comprising Insulin-Like Growth Factor-2 (Igf-2), And At Least Fibroblast Growth Factor (Fgf), Thrombopoietin (Tpo) And/Or Stem Cell Factor (Scf) To Enhance Propagation Of Progenitor Cell Populations; Tissue Engineering
  • Polynucleotides Encoding For Frizzled-Binding Agents And Uses Thereof
  • Compositions And Methods For Bone Formation And Modeling
  • Tiki Inhibitors
  • Compositions And Methods For Modulating Stem Cells And Uses Thereof
  • Methods And Compositions Involving Mirna And Mirna Inhibitor Molecules
  • Methods And Compositions Involving Mir-135b For Distinguishing Pancreatic Cancer From Benign Pancreatic Disease
  • Mir-124 Regulated Genes And Pathways As Targets For Therapeutic Intervention
  • Tiki Inhibitors
  • Wnt Antagonists And Methods Of Treatment And Screening
  • Methods For Transdifferentiating Cells
  • Frizzled Receptor Specific Immunoglobulin For Use In Diagnosis, Prevention And Treatment Of Cell Proliferative Disorders
  • Wnt Proteins And Detection And Treatment Of Cancer
  • Methods And Monitoring Of Treatment With A Wnt Pathway Inhibitor
  • Frizzled-Binding Agents And Uses Thereof
  • Human Frizzled (Fzd) Receptor Polypeptides And Methods Of Use Thereof For Treating Cancer And Inhibiting Growth Of Tumor Cells
  • Method And Compositions Involving Microrna
  • Binding To Lrp5 Or Lrp6 Receptor; Promoting Growth With Dan Family Bone Morphogenetic Protein Antagonist
  • Wnt Pathway Modulators
  • Wnt Compositions And Methods For Purification
  • Wnt Genes/Proteins; Antibodies; Double-Stranded Rna; Drug Screening
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01611

    DOI

    http://dx.doi.org/10.1038/nature01611

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031768095

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12717451


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Division", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Conserved Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cysteine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytoskeletal Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila melanogaster", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Growth Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hematopoietic Stem Cell Transplantation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hematopoietic Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "L Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipid Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutagenesis, Site-Directed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Palmitic Acids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solubility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trans-Activators", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wnt Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wnt3 Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wnt3A Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Xenopus Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Xenopus laevis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zebrafish Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "beta Catenin", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Willert", 
            "givenName": "Karl", 
            "id": "sg:person.0772452662.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772452662.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "Jeffrey D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Danenberg", 
            "givenName": "Esther", 
            "id": "sg:person.01233226234.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233226234.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmacology and Cancer Biology, Duke University Medical Center, 27710, Durham, North Carolina, USA", 
              "id": "http://www.grid.ac/institutes/grid.189509.c", 
              "name": [
                "Department of Pharmacology and Cancer Biology, Duke University Medical Center, 27710, Durham, North Carolina, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duncan", 
            "givenName": "Andrew W.", 
            "id": "sg:person.0670007403.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670007403.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Pathology and Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Departments of Pathology and Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weissman", 
            "givenName": "Irving L.", 
            "id": "sg:person.0767673555.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767673555.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmacology and Cancer Biology, Duke University Medical Center, 27710, Durham, North Carolina, USA", 
              "id": "http://www.grid.ac/institutes/grid.189509.c", 
              "name": [
                "Department of Pharmacology and Cancer Biology, Duke University Medical Center, 27710, Durham, North Carolina, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reya", 
            "givenName": "Tannishtha", 
            "id": "sg:person.0741223435.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741223435.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.214007.0", 
              "name": [
                "Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yates", 
            "givenName": "John R.", 
            "id": "sg:person.01104567247.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104567247.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nusse", 
            "givenName": "Roel", 
            "id": "sg:person.013075425137.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075425137.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/368342a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052102192", 
              "https://doi.org/10.1038/368342a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/367080a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046890704", 
              "https://doi.org/10.1038/367080a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019010156", 
              "https://doi.org/10.1038/nature01593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/85686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050637706", 
              "https://doi.org/10.1038/85686"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-04-27", 
        "datePublishedReg": "2003-04-27", 
        "description": "Wnt signalling is involved in numerous events in animal development1, including the proliferation of stem cells2 and the specification of the neural crest3. Wnt proteins are potentially important reagents in expanding specific cell types, but in contrast to other developmental signalling molecules such as hedgehog proteins and the bone morphogenetic proteins, Wnt proteins have never been isolated in an active form. Although Wnt proteins are secreted from cells4,5,6,7, secretion is usually inefficient8 and previous attempts to characterize Wnt proteins have been hampered by their high degree of insolubility. Here we have isolated active Wnt molecules, including the product of the mouse Wnt3a gene. By mass spectrometry, we found the proteins to be palmitoylated on a conserved cysteine. Enzymatic removal of the palmitate or site-directed and natural mutations of the modified cysteine result in loss of activity, and indicate that the lipid is important for signalling. The purified Wnt3a protein induces self-renewal of haematopoietic stem cells, signifying its potential use in tissue engineering.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature01611", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6938", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "423"
          }
        ], 
        "keywords": [
          "Wnt proteins", 
          "stem cell growth factor", 
          "bone morphogenetic protein", 
          "specific cell types", 
          "animal development1", 
          "haematopoietic stem cells", 
          "hedgehog protein", 
          "Wnt3a gene", 
          "morphogenetic proteins", 
          "natural mutations", 
          "Wnt molecules", 
          "Wnt3a protein", 
          "cysteine results", 
          "cell types", 
          "protein", 
          "stem cells", 
          "cell growth factor", 
          "active form", 
          "enzymatic removal", 
          "growth factor", 
          "important reagents", 
          "loss of activity", 
          "mass spectrometry", 
          "numerous events", 
          "genes", 
          "tissue engineering", 
          "cells2", 
          "mutations", 
          "cysteine", 
          "Development1", 
          "molecules", 
          "potential use", 
          "high degree", 
          "proliferation", 
          "lipids", 
          "cells", 
          "spectrometry", 
          "reagents", 
          "palmitate", 
          "insolubility", 
          "secretion", 
          "previous attempts", 
          "activity", 
          "contrast", 
          "loss", 
          "events", 
          "products", 
          "removal", 
          "factors", 
          "engineering", 
          "types", 
          "form", 
          "results", 
          "degree", 
          "specification", 
          "attempt", 
          "use"
        ], 
        "name": "Wnt proteins are lipid-modified and can act as stem cell growth factors", 
        "pagination": "448-452", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031768095"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01611"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12717451"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01611", 
          "https://app.dimensions.ai/details/publication/pub.1031768095"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_369.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature01611"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01611'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01611'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01611'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01611'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      21 PREDICATES      114 URIs      102 LITERALS      35 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01611 schema:about N0235f10e9ab241ea9b93227fc2fecde0
    2 N14b2d229ccdd426d8b5a848ecbdddf56
    3 N21ace0a0a777460fb85f8679d89b012d
    4 N246ee8464d954f0da4052bf328079761
    5 N31cb3bf6fa3f474290a6325a1b872bf2
    6 N352533f1beba4a389bdf517e9c78edb5
    7 N45920d7884ce447b954ff71583c2c371
    8 N4794900bfd414f179998a457c44a699e
    9 N4add6d3a299c4a29a63121c80940e52f
    10 N4d243ab05a134e5b97defcc4961e24d8
    11 N5115a27cd82d4619bc57de1121b208c9
    12 N563a7f9d7079478da5c0bf53ac7dc717
    13 N5e6b5e33de4f4f089f060e198d8d9958
    14 N6141ab84b5c84dee9057e2e80241d5ba
    15 N6543fceb86f14cc59264e948d43042ea
    16 N67f7c142d19943fb9bd0b532b06d45d7
    17 N8aa7201094d44a07b505afc38fba065c
    18 N97c5cdca713e4f998236797cff6afab2
    19 Nb1ec592079884453a5f881d459c015e8
    20 Nbb7f62c1eafe4adcbfe4748cafeefe62
    21 Nc7b517a6cd884b6eaaade9bc29593b8a
    22 Ne0fc9c6f5e3f449da90e64322eaf90cf
    23 Ne1674f6e68d5451aa49ccc562f44e68c
    24 Ne1f4a49d3f9c438890af40618e97ba6d
    25 Ne39a5a2394ee4e399ed6244b18dec7d8
    26 Ne939afb0e62a460d95867903d9b085f5
    27 Nf3222b543bdf4773b2534b5380f10663
    28 Nff2282263274474f9414cc881f9b3c7e
    29 anzsrc-for:06
    30 anzsrc-for:0601
    31 schema:author N0ccc85a5defb4753852ad49139f6b8de
    32 schema:citation sg:pub.10.1038/367080a0
    33 sg:pub.10.1038/368342a0
    34 sg:pub.10.1038/85686
    35 sg:pub.10.1038/nature01593
    36 schema:datePublished 2003-04-27
    37 schema:datePublishedReg 2003-04-27
    38 schema:description Wnt signalling is involved in numerous events in animal development1, including the proliferation of stem cells2 and the specification of the neural crest3. Wnt proteins are potentially important reagents in expanding specific cell types, but in contrast to other developmental signalling molecules such as hedgehog proteins and the bone morphogenetic proteins, Wnt proteins have never been isolated in an active form. Although Wnt proteins are secreted from cells4,5,6,7, secretion is usually inefficient8 and previous attempts to characterize Wnt proteins have been hampered by their high degree of insolubility. Here we have isolated active Wnt molecules, including the product of the mouse Wnt3a gene. By mass spectrometry, we found the proteins to be palmitoylated on a conserved cysteine. Enzymatic removal of the palmitate or site-directed and natural mutations of the modified cysteine result in loss of activity, and indicate that the lipid is important for signalling. The purified Wnt3a protein induces self-renewal of haematopoietic stem cells, signifying its potential use in tissue engineering.
    39 schema:genre article
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N1c5ffbf976c14286bebb3a3eb0680ac9
    42 Nfddf6ad58cfd47b3a2581298b0d989a1
    43 sg:journal.1018957
    44 schema:keywords Development1
    45 Wnt molecules
    46 Wnt proteins
    47 Wnt3a gene
    48 Wnt3a protein
    49 active form
    50 activity
    51 animal development1
    52 attempt
    53 bone morphogenetic protein
    54 cell growth factor
    55 cell types
    56 cells
    57 cells2
    58 contrast
    59 cysteine
    60 cysteine results
    61 degree
    62 engineering
    63 enzymatic removal
    64 events
    65 factors
    66 form
    67 genes
    68 growth factor
    69 haematopoietic stem cells
    70 hedgehog protein
    71 high degree
    72 important reagents
    73 insolubility
    74 lipids
    75 loss
    76 loss of activity
    77 mass spectrometry
    78 molecules
    79 morphogenetic proteins
    80 mutations
    81 natural mutations
    82 numerous events
    83 palmitate
    84 potential use
    85 previous attempts
    86 products
    87 proliferation
    88 protein
    89 reagents
    90 removal
    91 results
    92 secretion
    93 specific cell types
    94 specification
    95 spectrometry
    96 stem cell growth factor
    97 stem cells
    98 tissue engineering
    99 types
    100 use
    101 schema:name Wnt proteins are lipid-modified and can act as stem cell growth factors
    102 schema:pagination 448-452
    103 schema:productId N1eacae7f01bb4872956dbe7c9b795fa8
    104 N433dd1dd1ce84930abcd9cf50f7eff06
    105 N65a6c98d28854c448a51ffe3eae86852
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031768095
    107 https://doi.org/10.1038/nature01611
    108 schema:sdDatePublished 2022-12-01T06:23
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N522df3cb76644b05a999bf7316f3b99f
    111 schema:url https://doi.org/10.1038/nature01611
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N0235f10e9ab241ea9b93227fc2fecde0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Xenopus laevis
    117 rdf:type schema:DefinedTerm
    118 N0ccc85a5defb4753852ad49139f6b8de rdf:first sg:person.0772452662.09
    119 rdf:rest N2f95b1b2c7a1471ead44c72a4e954fa3
    120 N14b2d229ccdd426d8b5a848ecbdddf56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Drosophila melanogaster
    122 rdf:type schema:DefinedTerm
    123 N1c5ffbf976c14286bebb3a3eb0680ac9 schema:issueNumber 6938
    124 rdf:type schema:PublicationIssue
    125 N1eacae7f01bb4872956dbe7c9b795fa8 schema:name doi
    126 schema:value 10.1038/nature01611
    127 rdf:type schema:PropertyValue
    128 N21ace0a0a777460fb85f8679d89b012d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Hematopoietic Stem Cell Transplantation
    130 rdf:type schema:DefinedTerm
    131 N222ed31bee4942d29c8168504710c3c6 rdf:first sg:person.0767673555.64
    132 rdf:rest Ndaeefa36716b43719e964a4ffd5ee9e1
    133 N246ee8464d954f0da4052bf328079761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Cell Division
    135 rdf:type schema:DefinedTerm
    136 N2f95b1b2c7a1471ead44c72a4e954fa3 rdf:first Nf1105f265b2d488cb2b40403aac61207
    137 rdf:rest Ndcf87238dc41457e9022e1558b122bd1
    138 N31cb3bf6fa3f474290a6325a1b872bf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Proteins
    140 rdf:type schema:DefinedTerm
    141 N352533f1beba4a389bdf517e9c78edb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Signal Transduction
    143 rdf:type schema:DefinedTerm
    144 N433dd1dd1ce84930abcd9cf50f7eff06 schema:name dimensions_id
    145 schema:value pub.1031768095
    146 rdf:type schema:PropertyValue
    147 N45920d7884ce447b954ff71583c2c371 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Cysteine
    149 rdf:type schema:DefinedTerm
    150 N4794900bfd414f179998a457c44a699e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Mice
    152 rdf:type schema:DefinedTerm
    153 N4add6d3a299c4a29a63121c80940e52f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Wnt Proteins
    155 rdf:type schema:DefinedTerm
    156 N4d243ab05a134e5b97defcc4961e24d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Zebrafish Proteins
    158 rdf:type schema:DefinedTerm
    159 N50a6eceea42648bda76b3a8d4cd93bd9 rdf:first sg:person.0670007403.22
    160 rdf:rest N222ed31bee4942d29c8168504710c3c6
    161 N5115a27cd82d4619bc57de1121b208c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Palmitic Acids
    163 rdf:type schema:DefinedTerm
    164 N522df3cb76644b05a999bf7316f3b99f schema:name Springer Nature - SN SciGraph project
    165 rdf:type schema:Organization
    166 N563a7f9d7079478da5c0bf53ac7dc717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Molecular Sequence Data
    168 rdf:type schema:DefinedTerm
    169 N5e6b5e33de4f4f089f060e198d8d9958 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Growth Substances
    171 rdf:type schema:DefinedTerm
    172 N6141ab84b5c84dee9057e2e80241d5ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Cytoskeletal Proteins
    174 rdf:type schema:DefinedTerm
    175 N6543fceb86f14cc59264e948d43042ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Cell Differentiation
    177 rdf:type schema:DefinedTerm
    178 N65a6c98d28854c448a51ffe3eae86852 schema:name pubmed_id
    179 schema:value 12717451
    180 rdf:type schema:PropertyValue
    181 N67f7c142d19943fb9bd0b532b06d45d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Wnt3A Protein
    183 rdf:type schema:DefinedTerm
    184 N864522a2c385469d9f101a7b2eeac8ab rdf:first sg:person.01104567247.41
    185 rdf:rest Nf3092fa7f64b4f18b954d9a848f3c36c
    186 N8aa7201094d44a07b505afc38fba065c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Hematopoietic Stem Cells
    188 rdf:type schema:DefinedTerm
    189 N97c5cdca713e4f998236797cff6afab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Conserved Sequence
    191 rdf:type schema:DefinedTerm
    192 Nb1ec592079884453a5f881d459c015e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name L Cells
    194 rdf:type schema:DefinedTerm
    195 Nbb7f62c1eafe4adcbfe4748cafeefe62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Amino Acid Sequence
    197 rdf:type schema:DefinedTerm
    198 Nc7b517a6cd884b6eaaade9bc29593b8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Xenopus Proteins
    200 rdf:type schema:DefinedTerm
    201 Ndaeefa36716b43719e964a4ffd5ee9e1 rdf:first sg:person.0741223435.46
    202 rdf:rest N864522a2c385469d9f101a7b2eeac8ab
    203 Ndcf87238dc41457e9022e1558b122bd1 rdf:first sg:person.01233226234.00
    204 rdf:rest N50a6eceea42648bda76b3a8d4cd93bd9
    205 Ne0fc9c6f5e3f449da90e64322eaf90cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Lipid Metabolism
    207 rdf:type schema:DefinedTerm
    208 Ne1674f6e68d5451aa49ccc562f44e68c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Wnt3 Protein
    210 rdf:type schema:DefinedTerm
    211 Ne1f4a49d3f9c438890af40618e97ba6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Trans-Activators
    213 rdf:type schema:DefinedTerm
    214 Ne39a5a2394ee4e399ed6244b18dec7d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name beta Catenin
    216 rdf:type schema:DefinedTerm
    217 Ne939afb0e62a460d95867903d9b085f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Animals
    219 rdf:type schema:DefinedTerm
    220 Nf1105f265b2d488cb2b40403aac61207 schema:affiliation grid-institutes:grid.168010.e
    221 schema:familyName Brown
    222 schema:givenName Jeffrey D.
    223 rdf:type schema:Person
    224 Nf3092fa7f64b4f18b954d9a848f3c36c rdf:first sg:person.013075425137.91
    225 rdf:rest rdf:nil
    226 Nf3222b543bdf4773b2534b5380f10663 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    227 schema:name Mutagenesis, Site-Directed
    228 rdf:type schema:DefinedTerm
    229 Nfddf6ad58cfd47b3a2581298b0d989a1 schema:volumeNumber 423
    230 rdf:type schema:PublicationVolume
    231 Nff2282263274474f9414cc881f9b3c7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    232 schema:name Solubility
    233 rdf:type schema:DefinedTerm
    234 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    235 schema:name Biological Sciences
    236 rdf:type schema:DefinedTerm
    237 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    238 schema:name Biochemistry and Cell Biology
    239 rdf:type schema:DefinedTerm
    240 sg:journal.1018957 schema:issn 0028-0836
    241 1476-4687
    242 schema:name Nature
    243 schema:publisher Springer Nature
    244 rdf:type schema:Periodical
    245 sg:person.01104567247.41 schema:affiliation grid-institutes:grid.214007.0
    246 schema:familyName Yates
    247 schema:givenName John R.
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104567247.41
    249 rdf:type schema:Person
    250 sg:person.01233226234.00 schema:affiliation grid-institutes:grid.168010.e
    251 schema:familyName Danenberg
    252 schema:givenName Esther
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233226234.00
    254 rdf:type schema:Person
    255 sg:person.013075425137.91 schema:affiliation grid-institutes:grid.168010.e
    256 schema:familyName Nusse
    257 schema:givenName Roel
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075425137.91
    259 rdf:type schema:Person
    260 sg:person.0670007403.22 schema:affiliation grid-institutes:grid.189509.c
    261 schema:familyName Duncan
    262 schema:givenName Andrew W.
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670007403.22
    264 rdf:type schema:Person
    265 sg:person.0741223435.46 schema:affiliation grid-institutes:grid.189509.c
    266 schema:familyName Reya
    267 schema:givenName Tannishtha
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741223435.46
    269 rdf:type schema:Person
    270 sg:person.0767673555.64 schema:affiliation grid-institutes:grid.168010.e
    271 schema:familyName Weissman
    272 schema:givenName Irving L.
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767673555.64
    274 rdf:type schema:Person
    275 sg:person.0772452662.09 schema:affiliation grid-institutes:grid.168010.e
    276 schema:familyName Willert
    277 schema:givenName Karl
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772452662.09
    279 rdf:type schema:Person
    280 sg:pub.10.1038/367080a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046890704
    281 https://doi.org/10.1038/367080a0
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/368342a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052102192
    284 https://doi.org/10.1038/368342a0
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/85686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637706
    287 https://doi.org/10.1038/85686
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nature01593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019010156
    290 https://doi.org/10.1038/nature01593
    291 rdf:type schema:CreativeWork
    292 grid-institutes:grid.168010.e schema:alternateName Departments of Pathology and Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA
    293 Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA
    294 schema:name Departments of Pathology and Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA
    295 Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, 94305, Stanford, California, USA
    296 rdf:type schema:Organization
    297 grid-institutes:grid.189509.c schema:alternateName Department of Pharmacology and Cancer Biology, Duke University Medical Center, 27710, Durham, North Carolina, USA
    298 schema:name Department of Pharmacology and Cancer Biology, Duke University Medical Center, 27710, Durham, North Carolina, USA
    299 rdf:type schema:Organization
    300 grid-institutes:grid.214007.0 schema:alternateName Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA
    301 schema:name Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...