Cell fusion is the principal source of bone-marrow-derived hepatocytes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03-30

AUTHORS

Xin Wang, Holger Willenbring, Yassmine Akkari, Yumi Torimaru, Mark Foster, Muhsen Al-Dhalimy, Eric Lagasse, Milton Finegold, Susan Olson, Markus Grompe

ABSTRACT

Evidence suggests that haematopoietic stem cells might have unexpected developmental plasticity, highlighting therapeutic potential. For example, bone-marrow-derived hepatocytes can repopulate the liver of mice with fumarylacetoacetate hydrolase deficiency and correct their liver disease1. To determine the underlying mechanism in this murine model, we performed serial transplantation of bone-marrow-derived hepatocytes. Here we show by Southern blot analysis that the repopulating hepatocytes in the liver were heterozygous for alleles unique to the donor marrow, in contrast to the original homozygous donor cells. Furthermore, cytogenetic analysis of hepatocytes transplanted from female donor mice into male recipients demonstrated 80,XXXY (diploid to diploid fusion) and 120,XXXXYY (diploid to tetraploid fusion) karyotypes, indicative of fusion between donor and host cells. We conclude that hepatocytes derived form bone marrow arise from cell fusion and not by differentiation of haematopoietic stem cells. More... »

PAGES

897-901

Journal

TITLE

Nature

ISSUE

6934

VOLUME

422

Related Patents

  • Regeneration And Repair Of Neural Tissue Using Postpartum-Derived Cells
  • Methods For Differentiating Cells Into Hepatic Stellate Cells And Hepatic Sinusoidal Endothelial Cells, Cells Produced By The Methods, And Methods For Using The Cells
  • Methods For Collecting And Using Placenta Cord Blood Stem Cells
  • Postpartum-Derived Cells For Use In Treatment Of Disease Of The Heart And Circulatory System
  • Treatment Of Peripheral Vascular Disease Using Umbilical Cord Tissue-Derived Cells
  • Mapc Generation Of Muscle
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Compositions And Methods For Obtaining Cells To Treat Heart Tissue
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Using Umbilical Cord And Placenta Tissue To Treat Neurodegenerative Condition Of The Substantia Nigra Or Striatum
  • Methods And Materials For Providing Cardiac Cells
  • Use Of Multipotent Adult Stem Cells In Treatment Of Myocardial Infarction And Congestive Heart Failure
  • Organs For Transplantation
  • Hutc As Therapy For Alzheimer's Disease
  • Of Non-Embryonic Origin That Can Be Maintained In Culture In The Undifferentiated State Or Differentiated To Form Cells Of Multiple Cell Types; Used For Xenogeneic Transplantation And/Or Tissue Repair
  • Repair And Regeneration Of Ocular Tissue Using Postpartum-Derived Cells
  • Regeneration And Repair Of Neural Tissue Using Postpartum-Derived Cells
  • Soft Tissue Repair And Regeneration Using Postpartum-Derived Cells And Cell Products
  • Repair And Regeneration Of Ocular Tissue Using Postpartum-Derived Cells
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Hutc As Therapy For Alzheimer's Disease
  • Treatment Of Neurological Injury By Administration Of Human Umbilical Cord Tissue-Derived Cells
  • Treatment Of Peripheral Vascular Disease Using Umbilical Cord Tissue-Derived Cells
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Organs For Transplantation
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Use Of Multipotent Adult Stem Cells In Treatment Of Myocardial Infarction And Congestive Heart Failure
  • Stem Cell Aggregates And Methods For Making And Using
  • Treatment Of Stroke And Other Acute Neural Degenerative Disorders Via Intranasal Administration Of Umbilical Cord-Derived Cells
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Methods For Differentiating Cells Into Hepatic Stellate Cells And Hepatic Sinusoidal Endothelial Cells, Cells Produced By The Method, And Methods For Using The Cells
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Compositions And Methods For Obtaining Cells To Treat Heart Tissue
  • Differentiation Of Non-Embryonic Stem Cells To Cells Having A Pancreatic Phenotype
  • In Vitro Expansion Of Postpartum-Derived Cells In Roller Bottles
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Modulation Of Splenocytes In Cell Therapy
  • Treatment Of Stroke And Other Acute Neuraldegenerative Disorders Using Postpartum Derived Cells
  • Compositions Consisting Essentially Of Tgf-Β, Bmp-2 Fgf-4, Leukemia Inhibitory Factor, Igf-1, Il-6 And H-Α-Thrombin
  • Human Umbilical Cord Tissue Cells For Inhibiting Adverse Immune Response In Histocompatibility-Mismatched Transplantation
  • Optimized Methods For Differentiation Of Cells Into Cells With Hepatocyte And Hepatocyte Progenitor Phenotypes, Cells Produced By The Methods, And Methods For Using The Cells
  • Optimized Methods For Differentiation Of Cells Into Cells With Hepatocyte Progenitor Phenotypes, Cells Produced By The Methods, And Methods Of Using The Cells
  • Methods For Sterilizing Materials Containing Biologically Active Agents
  • Postpartum Cells Derived From Umbilical Tissue And Methods Of Making And Using The Same
  • Multipotent Adult Stem Cells, Sources Thereof, Methods Of Obtaining And Maintaining Same, Methods Of Differentiation Thereof, Methods Of Use Thereof And Cells Derived Thereof
  • Non-Static Suspension Culture Of Cell Aggregates
  • Modulation Of Splenocytes In Cell Therapy
  • Soft Tissue Repair And Regeneration Using Postpartum-Derived Cells And Cell Products
  • Method Of Differentiating Umbilical Cord Tissue Into A Chondrogenic Phenotype
  • Repair And Regeneration Of Renal Tissue Using Human Umbilical Cord Tissue-Derived Cells
  • Methods For Collecting And Using Placenta Cord Blood Stem Cells
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Cartilage And Bone Repair And Regeneration Using Postpartum-Derived Cells
  • Treatment Of Lung And Pulmonary Diseases And Disorders
  • Expanded Human Multipotent, Non-Embryonic, Non-Germ Cells That Can Differentiate Into At Least One Cell Type Of Each Of The Endodermal, Ectodermal, And Mesodermal Embryonic Lineages And Express Telomerase; Cardiovascular, Nervous System Diseases
  • Methods For Sterilizing Materials Containing Biologically Active Agents
  • Generation Of Inner Ear Auditory Hair Cell
  • Treatment Of Amyotrophic Lateral Sclerosis Using Umbilical Derived Cells
  • Increasing Atoh1 Life To Drive Sensorineural Hair Cell Differentiation
  • Regeneration And Repair Of Neural Tissue Using Postpartum-Derived Cells
  • Treatment Of Stroke And Other Acute Neural Degenerative Disorders Using Postpartum-Derived Cells
  • Pathways To Generate Hair Cells
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Treatment Of Hearing Loss By Inhibition Of Casein Kinase 1
  • Repair And Regeneration Of Ocular Tissue Using Postpartum-Derived Cells
  • Soft Tissue Repair And Regeneration Using Postpartum-Derived Cells And Cell Products
  • Non-Static Suspension Culture Of Cell Aggregates
  • Pluripotent Culture In Which Cells Are Capable Of Differentiating Into Mesodermal, Ectodermal And Endodermal Tissue Types; Gene Therapy And Tissue Engineering
  • Treating Cardiovascular Tissue
  • Homologous Recombination In Multipotent Adult Progenitor Cells
  • Treating Hearing Loss
  • Conditioned Media And Methods Of Making A Conditioned Media
  • Mapc Generation Of Lung Tissue
  • Homologous Recombination In Multipotent Adult Progenitor Cells
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01531

    DOI

    http://dx.doi.org/10.1038/nature01531

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053292933

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12665832


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bone Marrow Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Fusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diploidy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hematopoietic Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hepatocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Homozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hybrid Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "In Situ Hybridization, Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Karyotyping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyploidy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xin", 
            "id": "sg:person.01130627336.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130627336.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Willenbring", 
            "givenName": "Holger", 
            "id": "sg:person.01160273044.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160273044.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akkari", 
            "givenName": "Yassmine", 
            "id": "sg:person.01152442215.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152442215.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torimaru", 
            "givenName": "Yumi", 
            "id": "sg:person.01274521444.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274521444.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Foster", 
            "givenName": "Mark", 
            "id": "sg:person.01342634644.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342634644.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Al-Dhalimy", 
            "givenName": "Muhsen", 
            "id": "sg:person.015321277547.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321277547.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stem Cells Inc., 94304, Palo Alto, California, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Stem Cells Inc., 94304, Palo Alto, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lagasse", 
            "givenName": "Eric", 
            "id": "sg:person.01315133635.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315133635.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.416975.8", 
              "name": [
                "Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Finegold", 
            "givenName": "Milton", 
            "id": "sg:person.014103516477.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103516477.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olson", 
            "givenName": "Susan", 
            "id": "sg:person.01210053773.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210053773.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grompe", 
            "givenName": "Markus", 
            "id": "sg:person.01126164604.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126164604.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050743069", 
              "https://doi.org/10.1038/nature729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01535207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032702488", 
              "https://doi.org/10.1007/bf01535207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0895-453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044553748", 
              "https://doi.org/10.1038/ng0895-453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0396-266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043996615", 
              "https://doi.org/10.1038/ng0396-266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35070587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046093021", 
              "https://doi.org/10.1038/35070587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039353607", 
              "https://doi.org/10.1038/81326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35018642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006928495", 
              "https://doi.org/10.1038/35018642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017087327", 
              "https://doi.org/10.1038/nature730"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-03-30", 
        "datePublishedReg": "2003-03-30", 
        "description": "Evidence suggests that haematopoietic stem cells might have unexpected developmental plasticity, highlighting therapeutic potential. For example, bone-marrow-derived hepatocytes can repopulate the liver of mice with fumarylacetoacetate hydrolase deficiency and correct their liver disease1. To determine the underlying mechanism in this murine model, we performed serial transplantation of bone-marrow-derived hepatocytes. Here we show by Southern blot analysis that the repopulating hepatocytes in the liver were heterozygous for alleles unique to the donor marrow, in contrast to the original homozygous donor cells. Furthermore, cytogenetic analysis of hepatocytes transplanted from female donor mice into male recipients demonstrated 80,XXXY (diploid to diploid fusion) and 120,XXXXYY (diploid to tetraploid fusion) karyotypes, indicative of fusion between donor and host cells. We conclude that hepatocytes derived form bone marrow arise from cell fusion and not by differentiation of haematopoietic stem cells.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature01531", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6934", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "422"
          }
        ], 
        "keywords": [
          "haematopoietic stem cells", 
          "cell fusion", 
          "stem cells", 
          "Southern blot analysis", 
          "developmental plasticity", 
          "host cells", 
          "fumarylacetoacetate hydrolase deficiency", 
          "blot analysis", 
          "serial transplantation", 
          "cytogenetic analysis", 
          "cells", 
          "donor cells", 
          "underlying mechanism", 
          "hepatocytes", 
          "therapeutic potential", 
          "hydrolase deficiency", 
          "fusion", 
          "bone marrow", 
          "liver of mice", 
          "alleles", 
          "differentiation", 
          "karyotype", 
          "plasticity", 
          "mice", 
          "marrow", 
          "murine model", 
          "mechanism", 
          "donor marrow", 
          "donor mice", 
          "male recipients", 
          "liver", 
          "disease1", 
          "deficiency", 
          "principal source", 
          "analysis", 
          "contrast", 
          "evidence", 
          "potential", 
          "donors", 
          "transplantation", 
          "source", 
          "recipients", 
          "example", 
          "model"
        ], 
        "name": "Cell fusion is the principal source of bone-marrow-derived hepatocytes", 
        "pagination": "897-901", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053292933"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01531"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12665832"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01531", 
          "https://app.dimensions.ai/details/publication/pub.1053292933"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_373.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature01531"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01531'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01531'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01531'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01531'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      94 URIs      78 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01531 schema:about N11e997e0532e477383f56dcef0a9f847
    2 N1d426ce5ddde4ee2bf513c57d02a9d1c
    3 N2384c9c560f84b6099a8fd7f13bdf8ff
    4 N2a9356b59a1a4948908d06ff89c61d98
    5 N39ac54c6f0814fbd8cf26396157630f0
    6 N3dda2b320b454b83ac001d8d40c7979a
    7 N6d55599055464ec8825f168107ce39c1
    8 N6da66453feff46c39f4162205fee211e
    9 N840e079401f94378a3e3f599462bace9
    10 N922076e643ca4d639b5755098c978432
    11 N931aa06b8c9e43c2ab54ce1096baa49d
    12 N96a25b9077e54a50a6301de090121965
    13 N9903144700024e95841e2bc04ca12ad6
    14 Na10d5867444849f59e01c07f9153a0f6
    15 Nb4a6d3594b614367978073e2efb6852b
    16 Nb8d09bbb9b33424082dd20fc7a910816
    17 Nd63701663d7e42899d1d6ffd12dc288f
    18 anzsrc-for:06
    19 anzsrc-for:0601
    20 schema:author N1f5c2aa6338f49d9906f2be3734d2e8d
    21 schema:citation sg:pub.10.1007/bf01535207
    22 sg:pub.10.1038/35018642
    23 sg:pub.10.1038/35070587
    24 sg:pub.10.1038/81326
    25 sg:pub.10.1038/nature729
    26 sg:pub.10.1038/nature730
    27 sg:pub.10.1038/ng0396-266
    28 sg:pub.10.1038/ng0895-453
    29 schema:datePublished 2003-03-30
    30 schema:datePublishedReg 2003-03-30
    31 schema:description Evidence suggests that haematopoietic stem cells might have unexpected developmental plasticity, highlighting therapeutic potential. For example, bone-marrow-derived hepatocytes can repopulate the liver of mice with fumarylacetoacetate hydrolase deficiency and correct their liver disease1. To determine the underlying mechanism in this murine model, we performed serial transplantation of bone-marrow-derived hepatocytes. Here we show by Southern blot analysis that the repopulating hepatocytes in the liver were heterozygous for alleles unique to the donor marrow, in contrast to the original homozygous donor cells. Furthermore, cytogenetic analysis of hepatocytes transplanted from female donor mice into male recipients demonstrated 80,XXXY (diploid to diploid fusion) and 120,XXXXYY (diploid to tetraploid fusion) karyotypes, indicative of fusion between donor and host cells. We conclude that hepatocytes derived form bone marrow arise from cell fusion and not by differentiation of haematopoietic stem cells.
    32 schema:genre article
    33 schema:isAccessibleForFree false
    34 schema:isPartOf Nb1c769b07f6b4af88af090391183cd33
    35 Nb799ca2fa92a41df8f894c2394a7f525
    36 sg:journal.1018957
    37 schema:keywords Southern blot analysis
    38 alleles
    39 analysis
    40 blot analysis
    41 bone marrow
    42 cell fusion
    43 cells
    44 contrast
    45 cytogenetic analysis
    46 deficiency
    47 developmental plasticity
    48 differentiation
    49 disease1
    50 donor cells
    51 donor marrow
    52 donor mice
    53 donors
    54 evidence
    55 example
    56 fumarylacetoacetate hydrolase deficiency
    57 fusion
    58 haematopoietic stem cells
    59 hepatocytes
    60 host cells
    61 hydrolase deficiency
    62 karyotype
    63 liver
    64 liver of mice
    65 male recipients
    66 marrow
    67 mechanism
    68 mice
    69 model
    70 murine model
    71 plasticity
    72 potential
    73 principal source
    74 recipients
    75 serial transplantation
    76 source
    77 stem cells
    78 therapeutic potential
    79 transplantation
    80 underlying mechanism
    81 schema:name Cell fusion is the principal source of bone-marrow-derived hepatocytes
    82 schema:pagination 897-901
    83 schema:productId N2a525188f505473094ff62bdd9ae992f
    84 N899a0f05a9dd49a0adba2f93ddf1a2e0
    85 Nb38ecea55f3d45289cf64fdf12b47326
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053292933
    87 https://doi.org/10.1038/nature01531
    88 schema:sdDatePublished 2022-09-02T15:50
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nf10b605e89cd455ea5dad3bec2691f79
    91 schema:url https://doi.org/10.1038/nature01531
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N056f08bc5f034600a7c7e79746c79f1f rdf:first sg:person.01210053773.27
    96 rdf:rest N2a5d18f5b5ff4866b07a2f744aeab27b
    97 N11e997e0532e477383f56dcef0a9f847 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Karyotyping
    99 rdf:type schema:DefinedTerm
    100 N158aeddefdd04a5d8282d53dd05669c0 rdf:first sg:person.01315133635.01
    101 rdf:rest N2963169a50364448ab3f921b5545e5ef
    102 N1d426ce5ddde4ee2bf513c57d02a9d1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Heterozygote
    104 rdf:type schema:DefinedTerm
    105 N1f5c2aa6338f49d9906f2be3734d2e8d rdf:first sg:person.01130627336.45
    106 rdf:rest N6aaba763a78644e9b57d1d2a63a46187
    107 N2384c9c560f84b6099a8fd7f13bdf8ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Hybrid Cells
    109 rdf:type schema:DefinedTerm
    110 N2963169a50364448ab3f921b5545e5ef rdf:first sg:person.014103516477.24
    111 rdf:rest N056f08bc5f034600a7c7e79746c79f1f
    112 N2a525188f505473094ff62bdd9ae992f schema:name dimensions_id
    113 schema:value pub.1053292933
    114 rdf:type schema:PropertyValue
    115 N2a5d18f5b5ff4866b07a2f744aeab27b rdf:first sg:person.01126164604.61
    116 rdf:rest rdf:nil
    117 N2a9356b59a1a4948908d06ff89c61d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Diploidy
    119 rdf:type schema:DefinedTerm
    120 N3446e45ee22f40f88499899ce8352a58 rdf:first sg:person.01152442215.12
    121 rdf:rest N863d798e84544da8839f5fac0401eb78
    122 N34e874ad36bb4497a6403fa22f0d1abf rdf:first sg:person.01342634644.13
    123 rdf:rest N3aa667a76ade4f77ad20ebcda59aee39
    124 N39ac54c6f0814fbd8cf26396157630f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Homozygote
    126 rdf:type schema:DefinedTerm
    127 N3aa667a76ade4f77ad20ebcda59aee39 rdf:first sg:person.015321277547.53
    128 rdf:rest N158aeddefdd04a5d8282d53dd05669c0
    129 N3dda2b320b454b83ac001d8d40c7979a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Cell Differentiation
    131 rdf:type schema:DefinedTerm
    132 N6aaba763a78644e9b57d1d2a63a46187 rdf:first sg:person.01160273044.73
    133 rdf:rest N3446e45ee22f40f88499899ce8352a58
    134 N6d55599055464ec8825f168107ce39c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Animals
    136 rdf:type schema:DefinedTerm
    137 N6da66453feff46c39f4162205fee211e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Mice
    139 rdf:type schema:DefinedTerm
    140 N840e079401f94378a3e3f599462bace9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Female
    142 rdf:type schema:DefinedTerm
    143 N863d798e84544da8839f5fac0401eb78 rdf:first sg:person.01274521444.41
    144 rdf:rest N34e874ad36bb4497a6403fa22f0d1abf
    145 N899a0f05a9dd49a0adba2f93ddf1a2e0 schema:name pubmed_id
    146 schema:value 12665832
    147 rdf:type schema:PropertyValue
    148 N922076e643ca4d639b5755098c978432 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Polyploidy
    150 rdf:type schema:DefinedTerm
    151 N931aa06b8c9e43c2ab54ce1096baa49d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Bone Marrow Cells
    153 rdf:type schema:DefinedTerm
    154 N96a25b9077e54a50a6301de090121965 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Hematopoietic Stem Cells
    156 rdf:type schema:DefinedTerm
    157 N9903144700024e95841e2bc04ca12ad6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Cell Fusion
    159 rdf:type schema:DefinedTerm
    160 Na10d5867444849f59e01c07f9153a0f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Male
    162 rdf:type schema:DefinedTerm
    163 Nb1c769b07f6b4af88af090391183cd33 schema:issueNumber 6934
    164 rdf:type schema:PublicationIssue
    165 Nb38ecea55f3d45289cf64fdf12b47326 schema:name doi
    166 schema:value 10.1038/nature01531
    167 rdf:type schema:PropertyValue
    168 Nb4a6d3594b614367978073e2efb6852b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name In Situ Hybridization, Fluorescence
    170 rdf:type schema:DefinedTerm
    171 Nb799ca2fa92a41df8f894c2394a7f525 schema:volumeNumber 422
    172 rdf:type schema:PublicationVolume
    173 Nb8d09bbb9b33424082dd20fc7a910816 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Hepatocytes
    175 rdf:type schema:DefinedTerm
    176 Nd63701663d7e42899d1d6ffd12dc288f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Alleles
    178 rdf:type schema:DefinedTerm
    179 Nf10b605e89cd455ea5dad3bec2691f79 schema:name Springer Nature - SN SciGraph project
    180 rdf:type schema:Organization
    181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Biological Sciences
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Biochemistry and Cell Biology
    186 rdf:type schema:DefinedTerm
    187 sg:journal.1018957 schema:issn 0028-0836
    188 1476-4687
    189 schema:name Nature
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.01126164604.61 schema:affiliation grid-institutes:grid.5288.7
    193 schema:familyName Grompe
    194 schema:givenName Markus
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126164604.61
    196 rdf:type schema:Person
    197 sg:person.01130627336.45 schema:affiliation grid-institutes:grid.5288.7
    198 schema:familyName Wang
    199 schema:givenName Xin
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130627336.45
    201 rdf:type schema:Person
    202 sg:person.01152442215.12 schema:affiliation grid-institutes:grid.5288.7
    203 schema:familyName Akkari
    204 schema:givenName Yassmine
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152442215.12
    206 rdf:type schema:Person
    207 sg:person.01160273044.73 schema:affiliation grid-institutes:grid.5288.7
    208 schema:familyName Willenbring
    209 schema:givenName Holger
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160273044.73
    211 rdf:type schema:Person
    212 sg:person.01210053773.27 schema:affiliation grid-institutes:grid.5288.7
    213 schema:familyName Olson
    214 schema:givenName Susan
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210053773.27
    216 rdf:type schema:Person
    217 sg:person.01274521444.41 schema:affiliation grid-institutes:grid.5288.7
    218 schema:familyName Torimaru
    219 schema:givenName Yumi
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274521444.41
    221 rdf:type schema:Person
    222 sg:person.01315133635.01 schema:affiliation grid-institutes:None
    223 schema:familyName Lagasse
    224 schema:givenName Eric
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315133635.01
    226 rdf:type schema:Person
    227 sg:person.01342634644.13 schema:affiliation grid-institutes:grid.5288.7
    228 schema:familyName Foster
    229 schema:givenName Mark
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342634644.13
    231 rdf:type schema:Person
    232 sg:person.014103516477.24 schema:affiliation grid-institutes:grid.416975.8
    233 schema:familyName Finegold
    234 schema:givenName Milton
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103516477.24
    236 rdf:type schema:Person
    237 sg:person.015321277547.53 schema:affiliation grid-institutes:grid.5288.7
    238 schema:familyName Al-Dhalimy
    239 schema:givenName Muhsen
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321277547.53
    241 rdf:type schema:Person
    242 sg:pub.10.1007/bf01535207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032702488
    243 https://doi.org/10.1007/bf01535207
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/35018642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006928495
    246 https://doi.org/10.1038/35018642
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/35070587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046093021
    249 https://doi.org/10.1038/35070587
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/81326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039353607
    252 https://doi.org/10.1038/81326
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050743069
    255 https://doi.org/10.1038/nature729
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017087327
    258 https://doi.org/10.1038/nature730
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/ng0396-266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043996615
    261 https://doi.org/10.1038/ng0396-266
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/ng0895-453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044553748
    264 https://doi.org/10.1038/ng0895-453
    265 rdf:type schema:CreativeWork
    266 grid-institutes:None schema:alternateName Stem Cells Inc., 94304, Palo Alto, California, USA
    267 schema:name Stem Cells Inc., 94304, Palo Alto, California, USA
    268 rdf:type schema:Organization
    269 grid-institutes:grid.416975.8 schema:alternateName Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA
    270 schema:name Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA
    271 rdf:type schema:Organization
    272 grid-institutes:grid.5288.7 schema:alternateName Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA
    273 schema:name Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...