Cell fusion is the principal source of bone-marrow-derived hepatocytes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03-30

AUTHORS

Xin Wang, Holger Willenbring, Yassmine Akkari, Yumi Torimaru, Mark Foster, Muhsen Al-Dhalimy, Eric Lagasse, Milton Finegold, Susan Olson, Markus Grompe

ABSTRACT

Evidence suggests that haematopoietic stem cells might have unexpected developmental plasticity, highlighting therapeutic potential. For example, bone-marrow-derived hepatocytes can repopulate the liver of mice with fumarylacetoacetate hydrolase deficiency and correct their liver disease1. To determine the underlying mechanism in this murine model, we performed serial transplantation of bone-marrow-derived hepatocytes. Here we show by Southern blot analysis that the repopulating hepatocytes in the liver were heterozygous for alleles unique to the donor marrow, in contrast to the original homozygous donor cells. Furthermore, cytogenetic analysis of hepatocytes transplanted from female donor mice into male recipients demonstrated 80,XXXY (diploid to diploid fusion) and 120,XXXXYY (diploid to tetraploid fusion) karyotypes, indicative of fusion between donor and host cells. We conclude that hepatocytes derived form bone marrow arise from cell fusion and not by differentiation of haematopoietic stem cells. More... »

PAGES

897-901

Journal

TITLE

Nature

ISSUE

6934

VOLUME

422

Related Patents

  • Regeneration And Repair Of Neural Tissue Using Postpartum-Derived Cells
  • Methods For Collecting And Using Placenta Cord Blood Stem Cells
  • Use Of Multipotent Adult Stem Cells In Treatment Of Myocardial Infarction And Congestive Heart Failure
  • Methods And Materials For Providing Cardiac Cells
  • Methods For Differentiating Cells Into Hepatic Stellate Cells And Hepatic Sinusoidal Endothelial Cells, Cells Produced By The Methods, And Methods For Using The Cells
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Treatment Of Peripheral Vascular Disease Using Umbilical Cord Tissue-Derived Cells
  • Using Umbilical Cord And Placenta Tissue To Treat Neurodegenerative Condition Of The Substantia Nigra Or Striatum
  • Postpartum-Derived Cells For Use In Treatment Of Disease Of The Heart And Circulatory System
  • Compositions And Methods For Obtaining Cells To Treat Heart Tissue
  • Mapc Generation Of Muscle
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Organs For Transplantation
  • Hutc As Therapy For Alzheimer's Disease
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Treatment Of Peripheral Vascular Disease Using Umbilical Cord Tissue-Derived Cells
  • Soft Tissue Repair And Regeneration Using Postpartum-Derived Cells And Cell Products
  • Hutc As Therapy For Alzheimer's Disease
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Organs For Transplantation
  • Regeneration And Repair Of Neural Tissue Using Postpartum-Derived Cells
  • Repair And Regeneration Of Ocular Tissue Using Postpartum-Derived Cells
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Repair And Regeneration Of Ocular Tissue Using Postpartum-Derived Cells
  • Treatment Of Neurological Injury By Administration Of Human Umbilical Cord Tissue-Derived Cells
  • Of Non-Embryonic Origin That Can Be Maintained In Culture In The Undifferentiated State Or Differentiated To Form Cells Of Multiple Cell Types; Used For Xenogeneic Transplantation And/Or Tissue Repair
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Use Of Multipotent Adult Stem Cells In Treatment Of Myocardial Infarction And Congestive Heart Failure
  • Stem Cell Aggregates And Methods For Making And Using
  • Treatment Of Stroke And Other Acute Neural Degenerative Disorders Via Intranasal Administration Of Umbilical Cord-Derived Cells
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Methods For Differentiating Cells Into Hepatic Stellate Cells And Hepatic Sinusoidal Endothelial Cells, Cells Produced By The Method, And Methods For Using The Cells
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Compositions And Methods For Obtaining Cells To Treat Heart Tissue
  • Differentiation Of Non-Embryonic Stem Cells To Cells Having A Pancreatic Phenotype
  • In Vitro Expansion Of Postpartum-Derived Cells In Roller Bottles
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Modulation Of Splenocytes In Cell Therapy
  • Treatment Of Stroke And Other Acute Neuraldegenerative Disorders Using Postpartum Derived Cells
  • Compositions Consisting Essentially Of Tgf-Β, Bmp-2 Fgf-4, Leukemia Inhibitory Factor, Igf-1, Il-6 And H-Α-Thrombin
  • Human Umbilical Cord Tissue Cells For Inhibiting Adverse Immune Response In Histocompatibility-Mismatched Transplantation
  • Postpartum Cells Derived From Umbilical Tissue And Methods Of Making And Using The Same
  • Optimized Methods For Differentiation Of Cells Into Cells With Hepatocyte Progenitor Phenotypes, Cells Produced By The Methods, And Methods Of Using The Cells
  • Non-Static Suspension Culture Of Cell Aggregates
  • Multipotent Adult Stem Cells, Sources Thereof, Methods Of Obtaining And Maintaining Same, Methods Of Differentiation Thereof, Methods Of Use Thereof And Cells Derived Thereof
  • Methods For Collecting And Using Placenta Cord Blood Stem Cells
  • Multipotent Adult Stem Cells And Methods For Isolation
  • Treatment Of Lung And Pulmonary Diseases And Disorders
  • Expanded Human Multipotent, Non-Embryonic, Non-Germ Cells That Can Differentiate Into At Least One Cell Type Of Each Of The Endodermal, Ectodermal, And Mesodermal Embryonic Lineages And Express Telomerase; Cardiovascular, Nervous System Diseases
  • Methods For Sterilizing Materials Containing Biologically Active Agents
  • Modulation Of Splenocytes In Cell Therapy
  • Repair And Regeneration Of Renal Tissue Using Human Umbilical Cord Tissue-Derived Cells
  • Optimized Methods For Differentiation Of Cells Into Cells With Hepatocyte And Hepatocyte Progenitor Phenotypes, Cells Produced By The Methods, And Methods For Using The Cells
  • Method Of Differentiating Umbilical Cord Tissue Into A Chondrogenic Phenotype
  • Soft Tissue Repair And Regeneration Using Postpartum-Derived Cells And Cell Products
  • Cartilage And Bone Repair And Regeneration Using Postpartum-Derived Cells
  • Methods For Sterilizing Materials Containing Biologically Active Agents
  • Generation Of Inner Ear Auditory Hair Cell
  • Treatment Of Amyotrophic Lateral Sclerosis Using Umbilical Derived Cells
  • Increasing Atoh1 Life To Drive Sensorineural Hair Cell Differentiation
  • Regeneration And Repair Of Neural Tissue Using Postpartum-Derived Cells
  • Treatment Of Stroke And Other Acute Neural Degenerative Disorders Using Postpartum-Derived Cells
  • Pathways To Generate Hair Cells
  • Postpartum Cells Derived From Umbilical Cord Tissue, And Methods Of Making And Using The Same
  • Postpartum Cells Derived From Placental Tissue, And Methods Of Making And Using The Same
  • Treatment Of Hearing Loss By Inhibition Of Casein Kinase 1
  • Repair And Regeneration Of Ocular Tissue Using Postpartum-Derived Cells
  • Soft Tissue Repair And Regeneration Using Postpartum-Derived Cells And Cell Products
  • Non-Static Suspension Culture Of Cell Aggregates
  • Pluripotent Culture In Which Cells Are Capable Of Differentiating Into Mesodermal, Ectodermal And Endodermal Tissue Types; Gene Therapy And Tissue Engineering
  • Treating Cardiovascular Tissue
  • Homologous Recombination In Multipotent Adult Progenitor Cells
  • Treating Hearing Loss
  • Conditioned Media And Methods Of Making A Conditioned Media
  • Mapc Generation Of Lung Tissue
  • Homologous Recombination In Multipotent Adult Progenitor Cells
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01531

    DOI

    http://dx.doi.org/10.1038/nature01531

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053292933

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12665832


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bone Marrow Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Fusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diploidy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hematopoietic Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hepatocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Homozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hybrid Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "In Situ Hybridization, Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Karyotyping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyploidy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xin", 
            "id": "sg:person.01130627336.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130627336.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Willenbring", 
            "givenName": "Holger", 
            "id": "sg:person.01160273044.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160273044.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akkari", 
            "givenName": "Yassmine", 
            "id": "sg:person.01152442215.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152442215.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torimaru", 
            "givenName": "Yumi", 
            "id": "sg:person.01274521444.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274521444.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Foster", 
            "givenName": "Mark", 
            "id": "sg:person.01342634644.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342634644.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Al-Dhalimy", 
            "givenName": "Muhsen", 
            "id": "sg:person.015321277547.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321277547.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stem Cells Inc., 94304, Palo Alto, California, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Stem Cells Inc., 94304, Palo Alto, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lagasse", 
            "givenName": "Eric", 
            "id": "sg:person.01315133635.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315133635.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.416975.8", 
              "name": [
                "Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Finegold", 
            "givenName": "Milton", 
            "id": "sg:person.014103516477.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103516477.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olson", 
            "givenName": "Susan", 
            "id": "sg:person.01210053773.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210053773.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA", 
              "id": "http://www.grid.ac/institutes/grid.5288.7", 
              "name": [
                "Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grompe", 
            "givenName": "Markus", 
            "id": "sg:person.01126164604.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126164604.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050743069", 
              "https://doi.org/10.1038/nature729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01535207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032702488", 
              "https://doi.org/10.1007/bf01535207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0895-453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044553748", 
              "https://doi.org/10.1038/ng0895-453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0396-266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043996615", 
              "https://doi.org/10.1038/ng0396-266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35070587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046093021", 
              "https://doi.org/10.1038/35070587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039353607", 
              "https://doi.org/10.1038/81326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35018642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006928495", 
              "https://doi.org/10.1038/35018642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017087327", 
              "https://doi.org/10.1038/nature730"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-03-30", 
        "datePublishedReg": "2003-03-30", 
        "description": "Evidence suggests that haematopoietic stem cells might have unexpected developmental plasticity, highlighting therapeutic potential. For example, bone-marrow-derived hepatocytes can repopulate the liver of mice with fumarylacetoacetate hydrolase deficiency and correct their liver disease1. To determine the underlying mechanism in this murine model, we performed serial transplantation of bone-marrow-derived hepatocytes. Here we show by Southern blot analysis that the repopulating hepatocytes in the liver were heterozygous for alleles unique to the donor marrow, in contrast to the original homozygous donor cells. Furthermore, cytogenetic analysis of hepatocytes transplanted from female donor mice into male recipients demonstrated 80,XXXY (diploid to diploid fusion) and 120,XXXXYY (diploid to tetraploid fusion) karyotypes, indicative of fusion between donor and host cells. We conclude that hepatocytes derived form bone marrow arise from cell fusion and not by differentiation of haematopoietic stem cells.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature01531", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6934", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "422"
          }
        ], 
        "keywords": [
          "haematopoietic stem cells", 
          "cell fusion", 
          "stem cells", 
          "Southern blot analysis", 
          "developmental plasticity", 
          "host cells", 
          "fumarylacetoacetate hydrolase deficiency", 
          "blot analysis", 
          "serial transplantation", 
          "cytogenetic analysis", 
          "cells", 
          "donor cells", 
          "underlying mechanism", 
          "hepatocytes", 
          "therapeutic potential", 
          "hydrolase deficiency", 
          "fusion", 
          "bone marrow", 
          "liver of mice", 
          "alleles", 
          "differentiation", 
          "karyotype", 
          "plasticity", 
          "mice", 
          "marrow", 
          "murine model", 
          "mechanism", 
          "donor marrow", 
          "donor mice", 
          "male recipients", 
          "liver", 
          "disease1", 
          "deficiency", 
          "principal source", 
          "analysis", 
          "contrast", 
          "evidence", 
          "potential", 
          "donors", 
          "transplantation", 
          "source", 
          "recipients", 
          "example", 
          "model"
        ], 
        "name": "Cell fusion is the principal source of bone-marrow-derived hepatocytes", 
        "pagination": "897-901", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053292933"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01531"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12665832"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01531", 
          "https://app.dimensions.ai/details/publication/pub.1053292933"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_373.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature01531"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01531'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01531'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01531'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01531'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      94 URIs      78 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01531 schema:about N1e53484a325643e8ac9c82dc4b317906
    2 N2271f9083eb04967b9a6853997db102c
    3 N2695a5b951dc4834afd9fc3b30f0f969
    4 N383fb962987c4722a8df4365a5be63c5
    5 N3ab3d8974aed4fc99742e8d528b9e756
    6 N4dea5b9491924346846b9d6033ac2dc4
    7 N4e2a5d4323294b82be8675fb2a82d164
    8 N4f4906377baa49bea80500cc0fcba1ea
    9 N50dff470e74b4e858efe7b0c5cc2d0a8
    10 N8e4ced8c5c8349a4a0a080e87e3289b7
    11 Na03a01a707aa41e09158539f621f6668
    12 Nd3e1ba09ee964ea9b7b139dce8c48254
    13 Ne15d54d68c40479fbc61951e98beafca
    14 Ne42ee3402c9649bb9c89707b8d6f1d39
    15 Ne5a06c4c7ac64bbb995d41d3dc48ae26
    16 Nf380f2d546fc4e77bed08e36c3151822
    17 Nf4de6b68d0704383b1dfcd4d0d091238
    18 anzsrc-for:06
    19 anzsrc-for:0601
    20 schema:author Ne5f53a309cca4116906c1c77ac42d332
    21 schema:citation sg:pub.10.1007/bf01535207
    22 sg:pub.10.1038/35018642
    23 sg:pub.10.1038/35070587
    24 sg:pub.10.1038/81326
    25 sg:pub.10.1038/nature729
    26 sg:pub.10.1038/nature730
    27 sg:pub.10.1038/ng0396-266
    28 sg:pub.10.1038/ng0895-453
    29 schema:datePublished 2003-03-30
    30 schema:datePublishedReg 2003-03-30
    31 schema:description Evidence suggests that haematopoietic stem cells might have unexpected developmental plasticity, highlighting therapeutic potential. For example, bone-marrow-derived hepatocytes can repopulate the liver of mice with fumarylacetoacetate hydrolase deficiency and correct their liver disease1. To determine the underlying mechanism in this murine model, we performed serial transplantation of bone-marrow-derived hepatocytes. Here we show by Southern blot analysis that the repopulating hepatocytes in the liver were heterozygous for alleles unique to the donor marrow, in contrast to the original homozygous donor cells. Furthermore, cytogenetic analysis of hepatocytes transplanted from female donor mice into male recipients demonstrated 80,XXXY (diploid to diploid fusion) and 120,XXXXYY (diploid to tetraploid fusion) karyotypes, indicative of fusion between donor and host cells. We conclude that hepatocytes derived form bone marrow arise from cell fusion and not by differentiation of haematopoietic stem cells.
    32 schema:genre article
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N5f2ec895904f47f797b89cbbab9a5b40
    35 N6cc3d9965a19411bade705ca936c5248
    36 sg:journal.1018957
    37 schema:keywords Southern blot analysis
    38 alleles
    39 analysis
    40 blot analysis
    41 bone marrow
    42 cell fusion
    43 cells
    44 contrast
    45 cytogenetic analysis
    46 deficiency
    47 developmental plasticity
    48 differentiation
    49 disease1
    50 donor cells
    51 donor marrow
    52 donor mice
    53 donors
    54 evidence
    55 example
    56 fumarylacetoacetate hydrolase deficiency
    57 fusion
    58 haematopoietic stem cells
    59 hepatocytes
    60 host cells
    61 hydrolase deficiency
    62 karyotype
    63 liver
    64 liver of mice
    65 male recipients
    66 marrow
    67 mechanism
    68 mice
    69 model
    70 murine model
    71 plasticity
    72 potential
    73 principal source
    74 recipients
    75 serial transplantation
    76 source
    77 stem cells
    78 therapeutic potential
    79 transplantation
    80 underlying mechanism
    81 schema:name Cell fusion is the principal source of bone-marrow-derived hepatocytes
    82 schema:pagination 897-901
    83 schema:productId N11dcff8aab15410d86f124654e1562d6
    84 N85f17ceae12e4d46910d07de847d5024
    85 Nbce31784364c436b85b2d27a2b2ca5fd
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053292933
    87 https://doi.org/10.1038/nature01531
    88 schema:sdDatePublished 2022-09-02T15:50
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N15734004992d4607b8ff33a725ad5f1c
    91 schema:url https://doi.org/10.1038/nature01531
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N11dcff8aab15410d86f124654e1562d6 schema:name pubmed_id
    96 schema:value 12665832
    97 rdf:type schema:PropertyValue
    98 N15734004992d4607b8ff33a725ad5f1c schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N1e53484a325643e8ac9c82dc4b317906 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Karyotyping
    102 rdf:type schema:DefinedTerm
    103 N2271f9083eb04967b9a6853997db102c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Hematopoietic Stem Cells
    105 rdf:type schema:DefinedTerm
    106 N2420998275fa4168b8609e8639aec138 rdf:first sg:person.01274521444.41
    107 rdf:rest Ndcde971d9dbe405aa5cadd6c93e92a96
    108 N2695a5b951dc4834afd9fc3b30f0f969 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Cell Fusion
    110 rdf:type schema:DefinedTerm
    111 N383fb962987c4722a8df4365a5be63c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Cell Differentiation
    113 rdf:type schema:DefinedTerm
    114 N3ab3d8974aed4fc99742e8d528b9e756 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Male
    116 rdf:type schema:DefinedTerm
    117 N408b74a02fff49faa95a96b70d8e52d4 rdf:first sg:person.01160273044.73
    118 rdf:rest N770f7d3da57e4758a696dfb077c251ac
    119 N4dea5b9491924346846b9d6033ac2dc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Homozygote
    121 rdf:type schema:DefinedTerm
    122 N4e2a5d4323294b82be8675fb2a82d164 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Animals
    124 rdf:type schema:DefinedTerm
    125 N4f4906377baa49bea80500cc0fcba1ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Female
    127 rdf:type schema:DefinedTerm
    128 N50dff470e74b4e858efe7b0c5cc2d0a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Mice
    130 rdf:type schema:DefinedTerm
    131 N5f2ec895904f47f797b89cbbab9a5b40 schema:volumeNumber 422
    132 rdf:type schema:PublicationVolume
    133 N630623ed905446b08840cc55c1e5cb1a rdf:first sg:person.01210053773.27
    134 rdf:rest N844e5814a3ce4fc291f4666b3cde805b
    135 N6cc3d9965a19411bade705ca936c5248 schema:issueNumber 6934
    136 rdf:type schema:PublicationIssue
    137 N770f7d3da57e4758a696dfb077c251ac rdf:first sg:person.01152442215.12
    138 rdf:rest N2420998275fa4168b8609e8639aec138
    139 N844e5814a3ce4fc291f4666b3cde805b rdf:first sg:person.01126164604.61
    140 rdf:rest rdf:nil
    141 N85f17ceae12e4d46910d07de847d5024 schema:name dimensions_id
    142 schema:value pub.1053292933
    143 rdf:type schema:PropertyValue
    144 N8e4ced8c5c8349a4a0a080e87e3289b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Alleles
    146 rdf:type schema:DefinedTerm
    147 Na03a01a707aa41e09158539f621f6668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Hybrid Cells
    149 rdf:type schema:DefinedTerm
    150 Nbce31784364c436b85b2d27a2b2ca5fd schema:name doi
    151 schema:value 10.1038/nature01531
    152 rdf:type schema:PropertyValue
    153 Nc77503cd6cbe4845856699644b2edb66 rdf:first sg:person.01315133635.01
    154 rdf:rest Nfeedaf696e6c4691b82ab95ab2cf27db
    155 Ncc9a775913664de69db2c58347ca70d5 rdf:first sg:person.015321277547.53
    156 rdf:rest Nc77503cd6cbe4845856699644b2edb66
    157 Nd3e1ba09ee964ea9b7b139dce8c48254 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Polyploidy
    159 rdf:type schema:DefinedTerm
    160 Ndcde971d9dbe405aa5cadd6c93e92a96 rdf:first sg:person.01342634644.13
    161 rdf:rest Ncc9a775913664de69db2c58347ca70d5
    162 Ne15d54d68c40479fbc61951e98beafca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Bone Marrow Cells
    164 rdf:type schema:DefinedTerm
    165 Ne42ee3402c9649bb9c89707b8d6f1d39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Hepatocytes
    167 rdf:type schema:DefinedTerm
    168 Ne5a06c4c7ac64bbb995d41d3dc48ae26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name In Situ Hybridization, Fluorescence
    170 rdf:type schema:DefinedTerm
    171 Ne5f53a309cca4116906c1c77ac42d332 rdf:first sg:person.01130627336.45
    172 rdf:rest N408b74a02fff49faa95a96b70d8e52d4
    173 Nf380f2d546fc4e77bed08e36c3151822 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Diploidy
    175 rdf:type schema:DefinedTerm
    176 Nf4de6b68d0704383b1dfcd4d0d091238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Heterozygote
    178 rdf:type schema:DefinedTerm
    179 Nfeedaf696e6c4691b82ab95ab2cf27db rdf:first sg:person.014103516477.24
    180 rdf:rest N630623ed905446b08840cc55c1e5cb1a
    181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Biological Sciences
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Biochemistry and Cell Biology
    186 rdf:type schema:DefinedTerm
    187 sg:journal.1018957 schema:issn 0028-0836
    188 1476-4687
    189 schema:name Nature
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.01126164604.61 schema:affiliation grid-institutes:grid.5288.7
    193 schema:familyName Grompe
    194 schema:givenName Markus
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126164604.61
    196 rdf:type schema:Person
    197 sg:person.01130627336.45 schema:affiliation grid-institutes:grid.5288.7
    198 schema:familyName Wang
    199 schema:givenName Xin
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130627336.45
    201 rdf:type schema:Person
    202 sg:person.01152442215.12 schema:affiliation grid-institutes:grid.5288.7
    203 schema:familyName Akkari
    204 schema:givenName Yassmine
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152442215.12
    206 rdf:type schema:Person
    207 sg:person.01160273044.73 schema:affiliation grid-institutes:grid.5288.7
    208 schema:familyName Willenbring
    209 schema:givenName Holger
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160273044.73
    211 rdf:type schema:Person
    212 sg:person.01210053773.27 schema:affiliation grid-institutes:grid.5288.7
    213 schema:familyName Olson
    214 schema:givenName Susan
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210053773.27
    216 rdf:type schema:Person
    217 sg:person.01274521444.41 schema:affiliation grid-institutes:grid.5288.7
    218 schema:familyName Torimaru
    219 schema:givenName Yumi
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274521444.41
    221 rdf:type schema:Person
    222 sg:person.01315133635.01 schema:affiliation grid-institutes:None
    223 schema:familyName Lagasse
    224 schema:givenName Eric
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315133635.01
    226 rdf:type schema:Person
    227 sg:person.01342634644.13 schema:affiliation grid-institutes:grid.5288.7
    228 schema:familyName Foster
    229 schema:givenName Mark
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342634644.13
    231 rdf:type schema:Person
    232 sg:person.014103516477.24 schema:affiliation grid-institutes:grid.416975.8
    233 schema:familyName Finegold
    234 schema:givenName Milton
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103516477.24
    236 rdf:type schema:Person
    237 sg:person.015321277547.53 schema:affiliation grid-institutes:grid.5288.7
    238 schema:familyName Al-Dhalimy
    239 schema:givenName Muhsen
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321277547.53
    241 rdf:type schema:Person
    242 sg:pub.10.1007/bf01535207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032702488
    243 https://doi.org/10.1007/bf01535207
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/35018642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006928495
    246 https://doi.org/10.1038/35018642
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/35070587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046093021
    249 https://doi.org/10.1038/35070587
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/81326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039353607
    252 https://doi.org/10.1038/81326
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050743069
    255 https://doi.org/10.1038/nature729
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017087327
    258 https://doi.org/10.1038/nature730
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/ng0396-266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043996615
    261 https://doi.org/10.1038/ng0396-266
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/ng0895-453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044553748
    264 https://doi.org/10.1038/ng0895-453
    265 rdf:type schema:CreativeWork
    266 grid-institutes:None schema:alternateName Stem Cells Inc., 94304, Palo Alto, California, USA
    267 schema:name Stem Cells Inc., 94304, Palo Alto, California, USA
    268 rdf:type schema:Organization
    269 grid-institutes:grid.416975.8 schema:alternateName Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA
    270 schema:name Department of Pathology, Texas Children's Hospital, 77030, Houston, Texas, USA
    271 rdf:type schema:Organization
    272 grid-institutes:grid.5288.7 schema:alternateName Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA
    273 schema:name Department of Molecular and Medical Genetics, Oregon Health & Science University, 97239, Portland, Oregon, USA
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...