Mass spectrometry-based proteomics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

Ruedi Aebersold, Matthias Mann

ABSTRACT

Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for molecular and cellular biology and for the emerging field of systems biology. These include the study of protein–protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of numerous organelles, the concurrent description of the malaria parasite genome and proteome, and the generation of quantitative protein profiles from diverse species. The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine. More... »

PAGES

198-207

References to SciGraph publications

  • 1999-07. Direct analysis of protein complexes using mass spectrometry in NATURE BIOTECHNOLOGY
  • 2003-03. Proteomic analysis of post-translational modifications in NATURE BIOTECHNOLOGY
  • 2002-01. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry in NATURE
  • 2001-04. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome in NATURE BIOTECHNOLOGY
  • 2002-05. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry in NATURE BIOTECHNOLOGY
  • 2001-04. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues in NATURE MEDICINE
  • 2002-10. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry in NATURE
  • 2000-06. Proteomics to study genes and genomes in NATURE
  • 2002-11. A home for proteomics data? in NATURE
  • 2002-09. Comprehensive proteomic analysis of the human spliceosome in NATURE
  • 2003-02-18. The study of macromolecular complexes by quantitative proteomics in NATURE GENETICS
  • 1998-09. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex in NATURE GENETICS
  • 2002-03. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae in NATURE BIOTECHNOLOGY
  • 1999-10. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags in NATURE BIOTECHNOLOGY
  • 2002-10. A proteomic view of the Plasmodium falciparum life cycle in NATURE
  • 2002-06-01. A two-dimensional quadrupole ion trap mass spectrometer in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2001-03. Large-scale analysis of the yeast proteome by multidimensional protein identification technology in NATURE BIOTECHNOLOGY
  • 2001-10. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry in NATURE BIOTECHNOLOGY
  • 2001-04. A systematic approach to the analysis of protein phosphorylation in NATURE BIOTECHNOLOGY
  • 2002-01. Functional organization of the yeast proteome by systematic analysis of protein complexes in NATURE
  • 2002-07. The need for national centers for proteomics in NATURE BIOTECHNOLOGY
  • 2003-02-10. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling in NATURE BIOTECHNOLOGY
  • 1999-10. A generic protein purification method for protein complex characterization and proteome exploration in NATURE BIOTECHNOLOGY
  • 1994-11-01. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2002-05-08. Comparative assessment of large-scale data sets of protein–protein interactions in NATURE
  • Journal

    TITLE

    Nature

    ISSUE

    6928

    VOLUME

    422

    Related Patents

  • Mycobacterial Culture Screening Test For Mycobacterium Avium Complex Bacteria
  • Probe Station With Low Noise Characteristics
  • Probe Station
  • Analysis Of Amino Acids In Body Fluid By Liquid Chromatography-Mass Spectrometry
  • Wafer Probe
  • Membrane Probing System
  • Mesoporous Metal Oxide Materials For Phosphoproteomics
  • Probe Station With Low Noise Characteristics
  • Optical Testing Device
  • Wafer Probe Station Having A Skirting Component
  • Chromatographic Columns With Integrated Electrospray Emitters
  • Membrane Probing System
  • Using Mass Spectrometry To Monitor Polypeptide/Ligand Binding Interactions; Drug Screening; Rational Drug Design
  • Probe Testing Structure
  • Differential Waveguide Probe
  • Probe Station Thermal Chuck With Shielding For Capacitive Current
  • Membrane Detector For Time-Of-Flight Mass Spectrometry
  • Quantitative Standard For Mass Spectrometry Of Proteins
  • Probe For Testing A Device Under Test
  • Shielded Probe For Testing A Device Under Test
  • Shielded Probe For Testing A Device Under Test
  • Wafer Probe Station Having Environment Control Enclosure
  • Self-Calibration Of Mass Spectra Using Robust Statistical Methods
  • Differentiation Of Isobaric Amino Acids And Other Species
  • Probe Head Having A Membrane Suspended Probe
  • Probe Station
  • Wafer Probe Station Having Environment Control Enclosure
  • Quantitative Standard For Mass Spectrometry Of Proteins
  • Membrane Probing Method Using Improved Contact
  • Method,Array And Use Thereof
  • Method For Operating An Ion Trap Mass Spectrometer System
  • Nanoelectromechanical And Microelectromechanical Sensors And Analyzers
  • Single Molecule Mass Spectroscopy Enabled By Nanoelectromechanical Systems (Nems-Ms)
  • Methods For The Detection Of Jc Polyoma Virus
  • Shielded Probe For Testing A Device Under Test
  • Chuck For Holding A Device Under Test
  • Method For Quantitative Analysis Of Complex Proteomic Data
  • Switched Suspended Conductor And Connection
  • Membrane Probing System
  • System For Testing Semiconductors
  • Probe Station With Low Inductance Path
  • Chuck For Holding A Device Under Test
  • Devices And Methods For Analyzing Intact Proteins, Antibodies, Antibody Subunits, And Antibody Drug Conjugates
  • 3d Printable Hydrogel Materials
  • Analysis Of Amino Acids In Body Fluid By Liquid Chromatography-Mass Spectrometry
  • Correlation Of Gene And Protein Expression Patterns In Sample; Obtain Sample, Generate Both Gene And Protein Expression Profiles, Compare And Evauate, Associate Protein Analyzed With Specific Gene Expression Pattern
  • Probe For Combined Signals
  • Differentiation Of Isobaric Amino Acids And Other Species
  • Quantitative Standard For Mass Spectrometry Of Proteins
  • Materials And Methods For Diagnosis And Prognosis Of Liver Cancer
  • Sample Plate For Glycoprotein Analysis By Maldi Mass Spectrometry And Preparation Method Of The Same
  • Chuck With Integrated Wafer Support
  • Universal Or Broad Range Assays And Multi-Tag Sample Specific Diagnostic Process Using Non-Optical Sequencing
  • Probe Station Having Multiple Enclosures
  • Chuck With Integrated Wafer Support
  • Interface For Testing Semiconductors
  • Methods And Compositions For Detecting Endometrial Or Ovarian Cancer
  • Thermal Optical Chuck
  • Differential Signal Probe With Integral Balun
  • Probe Station With Two Platens
  • Chuck For Holding A Device Under Test
  • System For Testing Semiconductors
  • Methods And Kits For Distinguishing Between Specific And Non-Specific Protein Associations
  • Test Structure And Probe For Differential Signals
  • Localizing A Temperature Of A Device For Testing
  • Thermal Optical Chuck
  • Wafer Probe Station Having A Skirting Component
  • Methods For The Detection Of Jc Polyoma Virus
  • Interface For Testing Semiconductors
  • Analysis Of Amino Acids In Body Fluid By Liquid Chromotography-Mass Spectrometry
  • Membrane Probing Structure With Laterally Scrubbing Contacts
  • Wideband Active-Passive Differential Signal Probe
  • Analysis Of Amino Acids In Body Fluid By Liquid Chromotography-Mass Spectrometry
  • Guarded Tub Enclosure
  • System For Evaluating Probing Networks
  • Shielded Probe For High-Frequency Testing Of A Device Under Test
  • Method Of Constructing A Membrane Probe
  • Non-Invasive Methods Of Detecting Target Molecules
  • Shielded Probe For Testing A Device Under Test
  • Membrane Probing System With Local Contact Scrub
  • System For Evaluating Probing Networks
  • Guarded Tub Enclosure
  • Membrane Probing System
  • Chuck For Holding A Device Under Test
  • Methods And Compositions For Detecting Endometrial Or Ovarian Cancer
  • Electrokinetically Separating, Encapsulating And Extracting Analytes On A Microfluidic Device
  • Double Sided Probing Structures
  • Probe Station Thermal Chuck With Shielding For Capacitive Current
  • Differential Signal Probing System
  • Probe Head Having A Membrane Suspended Probe
  • Probe Station With Low Noise Characteristics
  • Markers For Cancer Detection
  • Wafer Probe Station Having A Skirting Component
  • On-Wafer Test Structures For Differential Signals
  • Shielded Probe For Testing A Device Under Test
  • Chuck With Integrated Wafer Support
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Methods And Systems For Adding A Reagent To An Analyte In A Gel
  • Probe Testing Structure
  • Method Of Assembling A Wafer Probe
  • Calibration Structures For Differential Signal Probing
  • Probe For Combined Signals
  • Probe Station With Low Inductance Path
  • Methods And Kits For Distinguishing Between Specific And Non-Specific Protein Associations
  • Probing Apparatus With Impedance Optimized Interface
  • Chuck For Holding A Device Under Test
  • Chuck With Integrated Wafer Support
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Probe Testing Structure
  • Method Of Assembling A Wafer Probe
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Methods And Systems For Adding A Reagent To An Analyte In A Gel
  • Test Apparatus For Measuring A Characteristic Of A Device Under Test
  • Chuck For Holding A Device Under Test
  • Switched Suspended Conductor And Connection
  • In Vivo Proteomic Mapping
  • Probe Station Having Multiple Enclosures
  • Shielded Probe With Low Contact Resistance For Testing A Device Under Test
  • Double Sided Probing Structures
  • Chuck For Holding A Device Under Test
  • Wafer Probe
  • Test Structure And Probe For Differential Signals
  • Nanopillar Arrays For Electron Emission
  • Methods For Diagnosis, Differentiation And Monitoring Using Urine Proteins As Markers In Iga Nephropathy
  • Diagnosis And Treatment Of Cell Proliferation And Differentiation Disorders Based On The Fmn2 Gene
  • Probe For High Frequency Signals
  • Chuck For Holding A Device Under Test
  • Wafer Probe
  • Method For Quantitative Analysis Of Complex Proteomic Data
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01511

    DOI

    http://dx.doi.org/10.1038/nature01511

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012180132

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12634793


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Biochemistry and Metabolomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteomics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, 1441 North 34th Street, 98103-8904, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, 1441 North 34th Street, 98103-8904, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aebersold", 
            "givenName": "Ruedi", 
            "id": "sg:person.015313356237.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics(CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.10825.3e", 
              "name": [
                "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics(CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mann", 
            "givenName": "Matthias", 
            "id": "sg:person.01210517576.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210517576.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/86783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026181446", 
              "https://doi.org/10.1038/86783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0303-255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045890250", 
              "https://doi.org/10.1038/nbt0303-255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017837373", 
              "https://doi.org/10.1038/nature750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045828427", 
              "https://doi.org/10.1038/13732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415180a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005267371", 
              "https://doi.org/10.1038/415180a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/86777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003596509", 
              "https://doi.org/10.1038/86777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0702-651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049586627", 
              "https://doi.org/10.1038/nbt0702-651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053547571", 
              "https://doi.org/10.1038/nature01107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/420021a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010815095", 
              "https://doi.org/10.1038/420021a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050797047", 
              "https://doi.org/10.1038/1700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030361158", 
              "https://doi.org/10.1038/35015709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029022565", 
              "https://doi.org/10.1038/13690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/86573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006375277", 
              "https://doi.org/10.1038/86573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002213324", 
              "https://doi.org/10.1038/ng1101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0502-512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023426571", 
              "https://doi.org/10.1038/nbt0502-512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002942507", 
              "https://doi.org/10.1038/nbt790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022415724", 
              "https://doi.org/10.1038/nature01111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1044-0305(02)00384-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027581145", 
              "https://doi.org/10.1016/s1044-0305(02)00384-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415141a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001484556", 
              "https://doi.org/10.1038/415141a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016955211", 
              "https://doi.org/10.1038/nature01031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1001-946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029399357", 
              "https://doi.org/10.1038/nbt1001-946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0302-301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002975314", 
              "https://doi.org/10.1038/nbt0302-301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/85686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050637706", 
              "https://doi.org/10.1038/85686"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-03", 
        "datePublishedReg": "2003-03-01", 
        "description": "Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for molecular and cellular biology and for the emerging field of systems biology. These include the study of protein\u2013protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of numerous organelles, the concurrent description of the malaria parasite genome and proteome, and the generation of quantitative protein profiles from diverse species. The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature01511", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6928", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "422"
          }
        ], 
        "keywords": [
          "mass spectrometry-based proteomics", 
          "spectrometry-based proteomics", 
          "malaria parasite genome", 
          "proteome-wide scale", 
          "quantitative protein profiles", 
          "protein-protein interactions", 
          "thousands of proteins", 
          "affinity-based isolation", 
          "parasite genome", 
          "diverse species", 
          "complex samples", 
          "systems biology", 
          "cellular biology", 
          "mass spectrometry", 
          "protein profiles", 
          "numerous organelles", 
          "biology", 
          "proteomics", 
          "genome", 
          "proteome", 
          "organelles", 
          "spectrometry", 
          "species", 
          "protein", 
          "indispensable tool", 
          "concurrent description", 
          "recent success", 
          "isolation", 
          "role", 
          "thousands", 
          "interaction", 
          "mapping", 
          "ability", 
          "samples", 
          "profile", 
          "generation", 
          "success", 
          "tool", 
          "study", 
          "field", 
          "description", 
          "medicine", 
          "scale"
        ], 
        "name": "Mass spectrometry-based proteomics", 
        "pagination": "198-207", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012180132"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01511"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12634793"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01511", 
          "https://app.dimensions.ai/details/publication/pub.1012180132"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_359.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature01511"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01511'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01511'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01511'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01511'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      21 PREDICATES      105 URIs      68 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01511 schema:about N05b35b40b4634da5a82dbbbdf4010349
    2 N11c990bcf47c477d85e61942221135a3
    3 N883d73142ce24c8b9a0f6ffa4b4742d9
    4 Na8575631ed344b8e8e4152bff05abf62
    5 Nc706234759c849d0a8a124d3ba78e105
    6 Ncc50e7ccfe6044518ac1dc883f0697ca
    7 Nf12217180bb14ac9b39c717bd902ef94
    8 anzsrc-for:03
    9 anzsrc-for:0301
    10 anzsrc-for:06
    11 anzsrc-for:0601
    12 anzsrc-for:11
    13 anzsrc-for:1101
    14 schema:author Nd2f822900890483b8c4bcadc6d19daa5
    15 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
    16 sg:pub.10.1016/s1044-0305(02)00384-7
    17 sg:pub.10.1038/10890
    18 sg:pub.10.1038/13690
    19 sg:pub.10.1038/13732
    20 sg:pub.10.1038/1700
    21 sg:pub.10.1038/35015709
    22 sg:pub.10.1038/415141a
    23 sg:pub.10.1038/415180a
    24 sg:pub.10.1038/420021a
    25 sg:pub.10.1038/85686
    26 sg:pub.10.1038/86573
    27 sg:pub.10.1038/86777
    28 sg:pub.10.1038/86783
    29 sg:pub.10.1038/nature01031
    30 sg:pub.10.1038/nature01107
    31 sg:pub.10.1038/nature01111
    32 sg:pub.10.1038/nature750
    33 sg:pub.10.1038/nbt0302-301
    34 sg:pub.10.1038/nbt0303-255
    35 sg:pub.10.1038/nbt0502-512
    36 sg:pub.10.1038/nbt0702-651
    37 sg:pub.10.1038/nbt1001-946
    38 sg:pub.10.1038/nbt790
    39 sg:pub.10.1038/ng1101
    40 schema:datePublished 2003-03
    41 schema:datePublishedReg 2003-03-01
    42 schema:description Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for molecular and cellular biology and for the emerging field of systems biology. These include the study of protein–protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of numerous organelles, the concurrent description of the malaria parasite genome and proteome, and the generation of quantitative protein profiles from diverse species. The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine.
    43 schema:genre article
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N7a128f126ea248c3896b513f87245231
    46 N88f1fdf5ecb747e9b031930fe741182e
    47 sg:journal.1018957
    48 schema:keywords ability
    49 affinity-based isolation
    50 biology
    51 cellular biology
    52 complex samples
    53 concurrent description
    54 description
    55 diverse species
    56 field
    57 generation
    58 genome
    59 indispensable tool
    60 interaction
    61 isolation
    62 malaria parasite genome
    63 mapping
    64 mass spectrometry
    65 mass spectrometry-based proteomics
    66 medicine
    67 numerous organelles
    68 organelles
    69 parasite genome
    70 profile
    71 protein
    72 protein profiles
    73 protein-protein interactions
    74 proteome
    75 proteome-wide scale
    76 proteomics
    77 quantitative protein profiles
    78 recent success
    79 role
    80 samples
    81 scale
    82 species
    83 spectrometry
    84 spectrometry-based proteomics
    85 study
    86 success
    87 systems biology
    88 thousands
    89 thousands of proteins
    90 tool
    91 schema:name Mass spectrometry-based proteomics
    92 schema:pagination 198-207
    93 schema:productId N3aef44572c154536ba3792c8bbd92aea
    94 N63b219ae378d47029fc25f0caa1880b7
    95 Nb13a724c71444b87a94721a2e6d0070e
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
    97 https://doi.org/10.1038/nature01511
    98 schema:sdDatePublished 2022-12-01T06:23
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher Ne92e2bad4a6b40f0a62d12dd7287d90f
    101 schema:url https://doi.org/10.1038/nature01511
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N05b35b40b4634da5a82dbbbdf4010349 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Gene Expression Profiling
    107 rdf:type schema:DefinedTerm
    108 N11c990bcf47c477d85e61942221135a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Animals
    110 rdf:type schema:DefinedTerm
    111 N3aef44572c154536ba3792c8bbd92aea schema:name doi
    112 schema:value 10.1038/nature01511
    113 rdf:type schema:PropertyValue
    114 N63b219ae378d47029fc25f0caa1880b7 schema:name pubmed_id
    115 schema:value 12634793
    116 rdf:type schema:PropertyValue
    117 N71fcddea7e4c4c33894ec1da5683518a rdf:first sg:person.01210517576.72
    118 rdf:rest rdf:nil
    119 N7a128f126ea248c3896b513f87245231 schema:issueNumber 6928
    120 rdf:type schema:PublicationIssue
    121 N883d73142ce24c8b9a0f6ffa4b4742d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Protein Binding
    123 rdf:type schema:DefinedTerm
    124 N88f1fdf5ecb747e9b031930fe741182e schema:volumeNumber 422
    125 rdf:type schema:PublicationVolume
    126 Na8575631ed344b8e8e4152bff05abf62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Humans
    128 rdf:type schema:DefinedTerm
    129 Nb13a724c71444b87a94721a2e6d0070e schema:name dimensions_id
    130 schema:value pub.1012180132
    131 rdf:type schema:PropertyValue
    132 Nc706234759c849d0a8a124d3ba78e105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Mass Spectrometry
    134 rdf:type schema:DefinedTerm
    135 Ncc50e7ccfe6044518ac1dc883f0697ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Proteomics
    137 rdf:type schema:DefinedTerm
    138 Nd2f822900890483b8c4bcadc6d19daa5 rdf:first sg:person.015313356237.76
    139 rdf:rest N71fcddea7e4c4c33894ec1da5683518a
    140 Ne92e2bad4a6b40f0a62d12dd7287d90f schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 Nf12217180bb14ac9b39c717bd902ef94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Proteins
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Chemical Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Analytical Chemistry
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Biological Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Biochemistry and Cell Biology
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Medical and Health Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:1101 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Medical Biochemistry and Metabolomics
    162 rdf:type schema:DefinedTerm
    163 sg:journal.1018957 schema:issn 0028-0836
    164 1476-4687
    165 schema:name Nature
    166 schema:publisher Springer Nature
    167 rdf:type schema:Periodical
    168 sg:person.01210517576.72 schema:affiliation grid-institutes:grid.10825.3e
    169 schema:familyName Mann
    170 schema:givenName Matthias
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210517576.72
    172 rdf:type schema:Person
    173 sg:person.015313356237.76 schema:affiliation grid-institutes:grid.64212.33
    174 schema:familyName Aebersold
    175 schema:givenName Ruedi
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76
    177 rdf:type schema:Person
    178 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
    179 https://doi.org/10.1016/1044-0305(94)80016-2
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1016/s1044-0305(02)00384-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027581145
    182 https://doi.org/10.1016/s1044-0305(02)00384-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
    185 https://doi.org/10.1038/10890
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    188 https://doi.org/10.1038/13690
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/13732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045828427
    191 https://doi.org/10.1038/13732
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050797047
    194 https://doi.org/10.1038/1700
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/35015709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030361158
    197 https://doi.org/10.1038/35015709
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/415141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484556
    200 https://doi.org/10.1038/415141a
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/415180a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005267371
    203 https://doi.org/10.1038/415180a
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/420021a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010815095
    206 https://doi.org/10.1038/420021a
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/85686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637706
    209 https://doi.org/10.1038/85686
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/86573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006375277
    212 https://doi.org/10.1038/86573
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/86777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003596509
    215 https://doi.org/10.1038/86777
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/86783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181446
    218 https://doi.org/10.1038/86783
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature01031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016955211
    221 https://doi.org/10.1038/nature01031
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature01107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053547571
    224 https://doi.org/10.1038/nature01107
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature01111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022415724
    227 https://doi.org/10.1038/nature01111
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017837373
    230 https://doi.org/10.1038/nature750
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nbt0302-301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002975314
    233 https://doi.org/10.1038/nbt0302-301
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nbt0303-255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045890250
    236 https://doi.org/10.1038/nbt0303-255
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nbt0502-512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023426571
    239 https://doi.org/10.1038/nbt0502-512
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nbt0702-651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049586627
    242 https://doi.org/10.1038/nbt0702-651
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt1001-946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029399357
    245 https://doi.org/10.1038/nbt1001-946
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nbt790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002942507
    248 https://doi.org/10.1038/nbt790
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ng1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002213324
    251 https://doi.org/10.1038/ng1101
    252 rdf:type schema:CreativeWork
    253 grid-institutes:grid.10825.3e schema:alternateName Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics(CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
    254 schema:name Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics(CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
    255 rdf:type schema:Organization
    256 grid-institutes:grid.64212.33 schema:alternateName Institute for Systems Biology, 1441 North 34th Street, 98103-8904, Seattle, Washington, USA
    257 schema:name Institute for Systems Biology, 1441 North 34th Street, 98103-8904, Seattle, Washington, USA
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...