Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-04

AUTHORS

K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, J. C. Davis

ABSTRACT

The electronic structure of simple crystalline solids can be completely described in terms either of local quantum states in real space (r-space), or of wave-like states defined in momentum-space (k-space). However, in the copper oxide superconductors, neither of these descriptions alone may be sufficient. Indeed, comparisons between r-space and k-space studies of Bi2Sr2CaCu2O8+delta (Bi-2212) reveal numerous unexplained phenomena and apparent contradictions. Here, to explore these issues, we report Fourier transform studies of atomic-scale spatial modulations in the Bi-2212 density of states. When analysed as arising from quasiparticle interference, the modulations yield elements of the Fermi-surface and energy gap in agreement with photoemission experiments. The consistency of numerous sets of dispersing modulations with the quasiparticle interference model shows that no additional order parameter is required. We also explore the momentum-space structure of the unoccupied states that are inaccessible to photoemission, and find strong similarities to the structure of the occupied states. The copper oxide quasiparticles therefore apparently exhibit particle-hole mixing similar to that of conventional superconductors. Near the energy gap maximum, the modulations become intense, commensurate with the crystal, and bounded by nanometre-scale domains. Scattering of the antinodal quasiparticles is therefore strongly influenced by nanometre-scale disorder. More... »

PAGES

592

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01496

DOI

http://dx.doi.org/10.1038/nature01496

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007359636

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12686994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "*\u2020Department of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McElroy", 
        "givenName": "K.", 
        "id": "sg:person.0735113167.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735113167.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Simmonds", 
        "givenName": "R. W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoffman", 
        "givenName": "J. E.", 
        "id": "sg:person.01147741657.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147741657.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "*\u2020Department of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
            "\u2021Center for Advanced Study, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "D.-H.", 
        "id": "sg:person.014076746221.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076746221.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "*\u2020Department of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orenstein", 
        "givenName": "J.", 
        "id": "sg:person.0604223060.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604223060.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u00a7AIST, 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki, 305-8568 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eisaki", 
        "givenName": "H.", 
        "id": "sg:person.0760631671.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760631671.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "\u2016Department of Physics, University of Tokyo, Yayoi, 2-11-16 Bunkyoku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uchida", 
        "givenName": "S.", 
        "id": "sg:person.015174570477.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174570477.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "*\u2020Department of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
            "\u00b6Department of Physics, LASSP, Cornell University, Ithaca, New York 14850, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davis", 
        "givenName": "J. C.", 
        "id": "sg:person.01127036513.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127036513.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.54.r9678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r9678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35095012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010659756", 
          "https://doi.org/10.1038/35095012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35095012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010659756", 
          "https://doi.org/10.1038/35095012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1066974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(02)02605-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(02)02605-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.100504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018526260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.100504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018526260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.r14737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020252955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.r14737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020252955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023097961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023097961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2001-00232-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023238433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35087518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025272248", 
          "https://doi.org/10.1038/35087518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35087518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025272248", 
          "https://doi.org/10.1038/35087518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.014533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031652332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.014533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031652332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363524a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031919996", 
          "https://doi.org/10.1038/363524a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415412a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032896293", 
          "https://doi.org/10.1038/415412a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415412a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032896293", 
          "https://doi.org/10.1038/415412a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.094514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040141624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.094514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040141624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.227001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043299160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.227001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043299160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1072640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048889932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.177007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.177007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.267.5196.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5436.2110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5477.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062570267"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "The electronic structure of simple crystalline solids can be completely described in terms either of local quantum states in real space (r-space), or of wave-like states defined in momentum-space (k-space). However, in the copper oxide superconductors, neither of these descriptions alone may be sufficient. Indeed, comparisons between r-space and k-space studies of Bi2Sr2CaCu2O8+delta (Bi-2212) reveal numerous unexplained phenomena and apparent contradictions. Here, to explore these issues, we report Fourier transform studies of atomic-scale spatial modulations in the Bi-2212 density of states. When analysed as arising from quasiparticle interference, the modulations yield elements of the Fermi-surface and energy gap in agreement with photoemission experiments. The consistency of numerous sets of dispersing modulations with the quasiparticle interference model shows that no additional order parameter is required. We also explore the momentum-space structure of the unoccupied states that are inaccessible to photoemission, and find strong similarities to the structure of the occupied states. The copper oxide quasiparticles therefore apparently exhibit particle-hole mixing similar to that of conventional superconductors. Near the energy gap maximum, the modulations become intense, commensurate with the crystal, and bounded by nanometre-scale domains. Scattering of the antinodal quasiparticles is therefore strongly influenced by nanometre-scale disorder.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature01496", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6932", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "422"
      }
    ], 
    "name": "Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+\u03b4", 
    "pagination": "592", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "230ea3ac9496dc9029e7e917ba98689ac408f8a7a41d6e2ea7e4c5d28abc0304"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12686994"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01496"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007359636"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01496", 
      "https://app.dimensions.ai/details/publication/pub.1007359636"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature01496"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01496'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01496'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01496'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01496'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01496 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N54702ec376bd48cc8d22f076d7f347c6
4 schema:citation sg:pub.10.1038/35087518
5 sg:pub.10.1038/35095012
6 sg:pub.10.1038/363524a0
7 sg:pub.10.1038/415412a
8 https://doi.org/10.1016/s0921-4534(02)02605-9
9 https://doi.org/10.1103/physrevb.53.r14737
10 https://doi.org/10.1103/physrevb.54.r9678
11 https://doi.org/10.1103/physrevb.64.100504
12 https://doi.org/10.1103/physrevb.67.014533
13 https://doi.org/10.1103/physrevb.67.020511
14 https://doi.org/10.1103/physrevb.67.094514
15 https://doi.org/10.1103/physrevlett.64.2308
16 https://doi.org/10.1103/physrevlett.70.1553
17 https://doi.org/10.1103/physrevlett.71.2781
18 https://doi.org/10.1103/physrevlett.71.3363
19 https://doi.org/10.1103/physrevlett.72.2757
20 https://doi.org/10.1103/physrevlett.82.2179
21 https://doi.org/10.1103/physrevlett.87.177007
22 https://doi.org/10.1103/physrevlett.87.227001
23 https://doi.org/10.1126/science.1066974
24 https://doi.org/10.1126/science.1072640
25 https://doi.org/10.1126/science.267.5196.343
26 https://doi.org/10.1126/science.285.5436.2110
27 https://doi.org/10.1126/science.289.5477.277
28 https://doi.org/10.1209/epl/i2001-00232-4
29 schema:datePublished 2003-04
30 schema:datePublishedReg 2003-04-01
31 schema:description The electronic structure of simple crystalline solids can be completely described in terms either of local quantum states in real space (r-space), or of wave-like states defined in momentum-space (k-space). However, in the copper oxide superconductors, neither of these descriptions alone may be sufficient. Indeed, comparisons between r-space and k-space studies of Bi2Sr2CaCu2O8+delta (Bi-2212) reveal numerous unexplained phenomena and apparent contradictions. Here, to explore these issues, we report Fourier transform studies of atomic-scale spatial modulations in the Bi-2212 density of states. When analysed as arising from quasiparticle interference, the modulations yield elements of the Fermi-surface and energy gap in agreement with photoemission experiments. The consistency of numerous sets of dispersing modulations with the quasiparticle interference model shows that no additional order parameter is required. We also explore the momentum-space structure of the unoccupied states that are inaccessible to photoemission, and find strong similarities to the structure of the occupied states. The copper oxide quasiparticles therefore apparently exhibit particle-hole mixing similar to that of conventional superconductors. Near the energy gap maximum, the modulations become intense, commensurate with the crystal, and bounded by nanometre-scale domains. Scattering of the antinodal quasiparticles is therefore strongly influenced by nanometre-scale disorder.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N434c3e97e9d94171875eea0fbbd86b44
36 N64ed5bc5fb664db19382e04a89dba676
37 sg:journal.1018957
38 schema:name Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ
39 schema:pagination 592
40 schema:productId N286e58ff01604b359bdf7197bbd70a1d
41 N8465927237eb4679bbab606dfd7d7835
42 Nda7921a1c1dd4d999c986e759d7fec78
43 Ne5651017a3fc4de7b0d5e8a7080d5302
44 Nedf767b8b47d45e3a400bd2dc8c95567
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007359636
46 https://doi.org/10.1038/nature01496
47 schema:sdDatePublished 2019-04-11T12:25
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ne8fa831624a346b2b9fb3b558bf29daa
50 schema:url https://www.nature.com/articles/nature01496
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1166e8ddf352487d8c89d275060fb345 rdf:first sg:person.014076746221.35
55 rdf:rest N5c3eff25496c4118866302351868f438
56 N286e58ff01604b359bdf7197bbd70a1d schema:name doi
57 schema:value 10.1038/nature01496
58 rdf:type schema:PropertyValue
59 N434c3e97e9d94171875eea0fbbd86b44 schema:issueNumber 6932
60 rdf:type schema:PublicationIssue
61 N54702ec376bd48cc8d22f076d7f347c6 rdf:first sg:person.0735113167.68
62 rdf:rest Nb55d460613834d13839d02689239eb69
63 N5c3eff25496c4118866302351868f438 rdf:first sg:person.0604223060.69
64 rdf:rest Nc80b126f6b3148cba0645c65f6101659
65 N64ed5bc5fb664db19382e04a89dba676 schema:volumeNumber 422
66 rdf:type schema:PublicationVolume
67 N6e26fafd002440f2a2e70dfde262d164 schema:familyName Simmonds
68 schema:givenName R. W.
69 rdf:type schema:Person
70 N8465927237eb4679bbab606dfd7d7835 schema:name pubmed_id
71 schema:value 12686994
72 rdf:type schema:PropertyValue
73 Nb55d460613834d13839d02689239eb69 rdf:first N6e26fafd002440f2a2e70dfde262d164
74 rdf:rest Nc11f70f40201484b98ab2cdf74db88cc
75 Nc11f70f40201484b98ab2cdf74db88cc rdf:first sg:person.01147741657.57
76 rdf:rest N1166e8ddf352487d8c89d275060fb345
77 Nc80b126f6b3148cba0645c65f6101659 rdf:first sg:person.0760631671.62
78 rdf:rest Nedf2484a1ad74730bdb94840f38b6910
79 Nda7921a1c1dd4d999c986e759d7fec78 schema:name readcube_id
80 schema:value 230ea3ac9496dc9029e7e917ba98689ac408f8a7a41d6e2ea7e4c5d28abc0304
81 rdf:type schema:PropertyValue
82 Ne1cbcda773ad4bc1be72ff4c3cc75fad schema:name §AIST, 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki, 305-8568 Japan
83 rdf:type schema:Organization
84 Ne5651017a3fc4de7b0d5e8a7080d5302 schema:name dimensions_id
85 schema:value pub.1007359636
86 rdf:type schema:PropertyValue
87 Ne77d833037a547dcb96c27302087498f rdf:first sg:person.01127036513.34
88 rdf:rest rdf:nil
89 Ne8fa831624a346b2b9fb3b558bf29daa schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nedf2484a1ad74730bdb94840f38b6910 rdf:first sg:person.015174570477.93
92 rdf:rest Ne77d833037a547dcb96c27302087498f
93 Nedf767b8b47d45e3a400bd2dc8c95567 schema:name nlm_unique_id
94 schema:value 0410462
95 rdf:type schema:PropertyValue
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
100 schema:name Materials Engineering
101 rdf:type schema:DefinedTerm
102 sg:journal.1018957 schema:issn 0090-0028
103 1476-4687
104 schema:name Nature
105 rdf:type schema:Periodical
106 sg:person.01127036513.34 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
107 schema:familyName Davis
108 schema:givenName J. C.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127036513.34
110 rdf:type schema:Person
111 sg:person.01147741657.57 schema:familyName Hoffman
112 schema:givenName J. E.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147741657.57
114 rdf:type schema:Person
115 sg:person.014076746221.35 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
116 schema:familyName Lee
117 schema:givenName D.-H.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076746221.35
119 rdf:type schema:Person
120 sg:person.015174570477.93 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
121 schema:familyName Uchida
122 schema:givenName S.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174570477.93
124 rdf:type schema:Person
125 sg:person.0604223060.69 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
126 schema:familyName Orenstein
127 schema:givenName J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604223060.69
129 rdf:type schema:Person
130 sg:person.0735113167.68 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
131 schema:familyName McElroy
132 schema:givenName K.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735113167.68
134 rdf:type schema:Person
135 sg:person.0760631671.62 schema:affiliation Ne1cbcda773ad4bc1be72ff4c3cc75fad
136 schema:familyName Eisaki
137 schema:givenName H.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760631671.62
139 rdf:type schema:Person
140 sg:pub.10.1038/35087518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025272248
141 https://doi.org/10.1038/35087518
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/35095012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010659756
144 https://doi.org/10.1038/35095012
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/363524a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031919996
147 https://doi.org/10.1038/363524a0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/415412a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032896293
150 https://doi.org/10.1038/415412a
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0921-4534(02)02605-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013962890
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.53.r14737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020252955
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevb.54.r9678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006465235
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.64.100504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018526260
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.67.014533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031652332
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.67.020511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023097961
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.67.094514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040141624
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.64.2308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800535
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.70.1553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806463
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.71.2781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807848
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.71.3363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690713
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.72.2757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808904
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.82.2179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819099
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.87.177007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052930376
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.87.227001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043299160
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1066974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175990
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1072640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048889932
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.267.5196.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549492
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.285.5436.2110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566718
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.289.5477.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570267
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1209/epl/i2001-00232-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023238433
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
195 schema:name *†Department of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
196 ‡Center for Advanced Study, Tsinghua University, Beijing 100084, China
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
199 schema:name ‖Department of Physics, University of Tokyo, Yayoi, 2-11-16 Bunkyoku, Tokyo 113-8656, Japan
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
202 schema:name *†Department of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
205 schema:name *†Department of Physics, University of California, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
206 ¶Department of Physics, LASSP, Cornell University, Ithaca, New York 14850, USA
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...