A subfemtotesla multichannel atomic magnetometer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis

ABSTRACT

The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4 K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1 fT Hz(-1/2) (1 fT = 10(-15) T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54 fT Hz(-1/2) with a measurement volume of only 0.3 cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz(-1/2). We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2 mm. More... »

PAGES

596

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01484

DOI

http://dx.doi.org/10.1038/nature01484

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021285617

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12686995


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "*Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kominis", 
        "givenName": "I. K.", 
        "id": "sg:person.01150365321.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150365321.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "*Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kornack", 
        "givenName": "T. W.", 
        "id": "sg:person.01241471265.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241471265.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "\u2021Department of Physics, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allred", 
        "givenName": "J. C.", 
        "id": "sg:person.01225624732.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225624732.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "*Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romalis", 
        "givenName": "M. V.", 
        "id": "sg:person.01353636402.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353636402.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.126059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004827514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-002-0959-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018873367", 
          "https://doi.org/10.1007/s00340-002-0959-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1559-3584.1998.tb02393.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023167908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1559-3584.1998.tb02393.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023167908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024980246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024980246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5674-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025515779", 
          "https://doi.org/10.1007/978-94-011-5674-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5674-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025515779", 
          "https://doi.org/10.1007/978-94-011-5674-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(01)01160-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033935152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040059116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040059116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044003596", 
          "https://doi.org/10.1038/17120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044003596", 
          "https://doi.org/10.1038/17120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(69)90480-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044610795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(69)90480-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044610795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/64/12/204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046349822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1147514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057675788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1150603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057679172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.119974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057684158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1659074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057737082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.332990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057937472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.16.1877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.16.1877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.043403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.043403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.130801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.130801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/77.919485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061226941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2165630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062525135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5306.1629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556056"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4 K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1 fT Hz(-1/2) (1 fT = 10(-15) T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54 fT Hz(-1/2) with a measurement volume of only 0.3 cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz(-1/2). We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2 mm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature01484", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6932", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "422"
      }
    ], 
    "name": "A subfemtotesla multichannel atomic magnetometer", 
    "pagination": "596", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "656a7b7adab1b80e72e1b6c5abb1b2a89f0fd851574b5ac8d9987e7806c4e5b0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12686995"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01484"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021285617"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01484", 
      "https://app.dimensions.ai/details/publication/pub.1021285617"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature01484"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01484'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01484'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01484'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01484'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      56 URIs      23 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01484 schema:about Nab8dd346eabd42c1a3e25d42045a772e
2 Nf999dca9103a4f09a6d5eb6e88a6ff7b
3 anzsrc-for:02
4 anzsrc-for:0299
5 schema:author N950a3024baab463ea81f4f4360c7d591
6 schema:citation sg:pub.10.1007/978-94-011-5674-5
7 sg:pub.10.1007/s00340-002-0959-8
8 sg:pub.10.1038/17120
9 https://doi.org/10.1016/0375-9601(69)90480-0
10 https://doi.org/10.1016/s0921-4534(01)01160-1
11 https://doi.org/10.1063/1.1147514
12 https://doi.org/10.1063/1.1150603
13 https://doi.org/10.1063/1.119974
14 https://doi.org/10.1063/1.126059
15 https://doi.org/10.1063/1.1659074
16 https://doi.org/10.1063/1.332990
17 https://doi.org/10.1088/0034-4885/64/12/204
18 https://doi.org/10.1103/physreva.16.1877
19 https://doi.org/10.1103/physreva.62.043403
20 https://doi.org/10.1103/physrevlett.81.5788
21 https://doi.org/10.1103/physrevlett.85.182
22 https://doi.org/10.1103/physrevlett.89.130801
23 https://doi.org/10.1103/revmodphys.65.413
24 https://doi.org/10.1103/revmodphys.70.175
25 https://doi.org/10.1103/revmodphys.74.1153
26 https://doi.org/10.1109/77.919485
27 https://doi.org/10.1111/j.1559-3584.1998.tb02393.x
28 https://doi.org/10.1126/science.1069280
29 https://doi.org/10.1126/science.2165630
30 https://doi.org/10.1126/science.275.5306.1629
31 schema:datePublished 2003-04
32 schema:datePublishedReg 2003-04-01
33 schema:description The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4 K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1 fT Hz(-1/2) (1 fT = 10(-15) T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54 fT Hz(-1/2) with a measurement volume of only 0.3 cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz(-1/2). We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2 mm.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N07c3b93347d44e5681f944820bb09968
38 Naa9007b1f5924b1ba16cacf9d0e117da
39 sg:journal.1018957
40 schema:name A subfemtotesla multichannel atomic magnetometer
41 schema:pagination 596
42 schema:productId N07af789101da42588f15a4ac7ba3e05b
43 Nbada87434a764f5c82790559a40cebc8
44 Ndd614628889342adbe375a07d3d797c7
45 Ndedc97a218e24728bb60f97a86cfe1b4
46 Ne0290e899a0040338e5def45ae1b9dc7
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021285617
48 https://doi.org/10.1038/nature01484
49 schema:sdDatePublished 2019-04-11T12:27
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nd69567f8fd52472eabce68e72060121e
52 schema:url https://www.nature.com/articles/nature01484
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N07af789101da42588f15a4ac7ba3e05b schema:name pubmed_id
57 schema:value 12686995
58 rdf:type schema:PropertyValue
59 N07c3b93347d44e5681f944820bb09968 schema:issueNumber 6932
60 rdf:type schema:PublicationIssue
61 N58fa3875242e4077839a0b0e227f12a1 rdf:first sg:person.01353636402.40
62 rdf:rest rdf:nil
63 N950a3024baab463ea81f4f4360c7d591 rdf:first sg:person.01150365321.05
64 rdf:rest Nffe8e1e19b4743e3ab9d4568ab7b6ce3
65 Naa9007b1f5924b1ba16cacf9d0e117da schema:volumeNumber 422
66 rdf:type schema:PublicationVolume
67 Nab8dd346eabd42c1a3e25d42045a772e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Sensitivity and Specificity
69 rdf:type schema:DefinedTerm
70 Nbada87434a764f5c82790559a40cebc8 schema:name readcube_id
71 schema:value 656a7b7adab1b80e72e1b6c5abb1b2a89f0fd851574b5ac8d9987e7806c4e5b0
72 rdf:type schema:PropertyValue
73 Nd69567f8fd52472eabce68e72060121e schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ndd614628889342adbe375a07d3d797c7 schema:name dimensions_id
76 schema:value pub.1021285617
77 rdf:type schema:PropertyValue
78 Ndedc97a218e24728bb60f97a86cfe1b4 schema:name nlm_unique_id
79 schema:value 0410462
80 rdf:type schema:PropertyValue
81 Ne0290e899a0040338e5def45ae1b9dc7 schema:name doi
82 schema:value 10.1038/nature01484
83 rdf:type schema:PropertyValue
84 Nea3cc2486fb543eba53cfa2512bdcdb2 rdf:first sg:person.01225624732.06
85 rdf:rest N58fa3875242e4077839a0b0e227f12a1
86 Nf999dca9103a4f09a6d5eb6e88a6ff7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Magnetics
88 rdf:type schema:DefinedTerm
89 Nffe8e1e19b4743e3ab9d4568ab7b6ce3 rdf:first sg:person.01241471265.48
90 rdf:rest Nea3cc2486fb543eba53cfa2512bdcdb2
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
95 schema:name Other Physical Sciences
96 rdf:type schema:DefinedTerm
97 sg:journal.1018957 schema:issn 0090-0028
98 1476-4687
99 schema:name Nature
100 rdf:type schema:Periodical
101 sg:person.01150365321.05 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
102 schema:familyName Kominis
103 schema:givenName I. K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150365321.05
105 rdf:type schema:Person
106 sg:person.01225624732.06 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
107 schema:familyName Allred
108 schema:givenName J. C.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225624732.06
110 rdf:type schema:Person
111 sg:person.01241471265.48 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
112 schema:familyName Kornack
113 schema:givenName T. W.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241471265.48
115 rdf:type schema:Person
116 sg:person.01353636402.40 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
117 schema:familyName Romalis
118 schema:givenName M. V.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353636402.40
120 rdf:type schema:Person
121 sg:pub.10.1007/978-94-011-5674-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025515779
122 https://doi.org/10.1007/978-94-011-5674-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00340-002-0959-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018873367
125 https://doi.org/10.1007/s00340-002-0959-8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/17120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044003596
128 https://doi.org/10.1038/17120
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0375-9601(69)90480-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044610795
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0921-4534(01)01160-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033935152
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1147514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057675788
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.1150603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057679172
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.119974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057684158
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.126059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004827514
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.1659074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057737082
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.332990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057937472
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0034-4885/64/12/204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046349822
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.16.1877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466649
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.62.043403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496592
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.81.5788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818733
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.85.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024980246
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.89.130801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825353
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/revmodphys.65.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839289
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/revmodphys.70.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839420
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/revmodphys.74.1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040059116
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/77.919485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061226941
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1559-3584.1998.tb02393.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023167908
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1069280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445893
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.2165630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062525135
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.275.5306.1629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556056
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
175 schema:name *Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
178 schema:name ‡Department of Physics, University of Washington, Seattle, Washington 98195, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...