Direct observation of a local thermal vibration anomaly in a quasicrystal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-01

AUTHORS

Eiji Abe, S. J. Pennycook, A. P. Tsai

ABSTRACT

Quasicrystals have long-range order with symmetries that are incompatible with periodicity, and are often described with reference to a higher-dimensional analogue of a periodic lattice. Within the context of this 'hyperspace' crystallography, lattice dynamics of quasicrystals can be described by a combination of lattice vibrations and atomic fluctuations--phonons and phasons. However, it is difficult to see localized fluctuations in a real-space quasicrystal structure, and so the nature of phason-related fluctuations and their contribution to thermodynamic stability are still not fully understood. Here we use atomic-resolution annular dark-field scanning transmission electron microscopy to map directly the change in thermal diffuse scattering intensity distribution in the quasicrystal, through in situ high-temperature observation of decagonal Al72Ni20Co8. We find that, at 1,100 K, a local anomaly of atomic vibrations becomes significant at specific atomic sites in the structure. The distribution of these localized vibrations is not random but well-correlated, with a quasiperiodic length scale of 2 nm. We are able to explain this feature by an anomalous temperature (Debye-Waller) factor for the Al atoms that sit at the phason-related sites defined within the framework of hyperspace crystallography. The present results therefore provide a direct observation of local thermal vibration anomalies in a solid. More... »

PAGES

347

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6921

VOLUME

421

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01337

DOI

http://dx.doi.org/10.1038/nature01337

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017371962

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12540895


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "*Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA", 
            "\u2020National Institute for Materials Science and SORST, Japan Science and Technology Corporation, 1-2-1 Sengen, Tsukuba 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Eiji", 
        "id": "sg:person.0671243020.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671243020.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "*Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pennycook", 
        "givenName": "S. J.", 
        "id": "sg:person.0702306474.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702306474.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "\u2020National Institute for Materials Science and SORST, Japan Science and Technology Corporation, 1-2-1 Sengen, Tsukuba 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsai", 
        "givenName": "A. P.", 
        "id": "sg:person.01250243226.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250243226.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0108767391004804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002647766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767396000967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007618535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767301007942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010867139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3991(00)00128-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011796310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3991(91)90004-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012282274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3991(91)90004-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012282274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/23902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016657189", 
          "https://doi.org/10.1038/23902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/23902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016657189", 
          "https://doi.org/10.1038/23902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/095008396180452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019549067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767386099324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021113510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021639946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021639946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108768101018936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026689693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500830050134381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028237642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-8388(02)00199-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034117864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90275-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045251612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90275-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045251612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00239998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045453197", 
          "https://doi.org/10.1007/bf00239998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00239998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045453197", 
          "https://doi.org/10.1007/bf00239998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.3345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.3345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.4458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.4458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.5228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.5228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.9394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.9394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.014202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.014202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.36.l1400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063058781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.72.1828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063120656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814503532_0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088765668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814503532_0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088765681"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-01", 
    "datePublishedReg": "2003-01-01", 
    "description": "Quasicrystals have long-range order with symmetries that are incompatible with periodicity, and are often described with reference to a higher-dimensional analogue of a periodic lattice. Within the context of this 'hyperspace' crystallography, lattice dynamics of quasicrystals can be described by a combination of lattice vibrations and atomic fluctuations--phonons and phasons. However, it is difficult to see localized fluctuations in a real-space quasicrystal structure, and so the nature of phason-related fluctuations and their contribution to thermodynamic stability are still not fully understood. Here we use atomic-resolution annular dark-field scanning transmission electron microscopy to map directly the change in thermal diffuse scattering intensity distribution in the quasicrystal, through in situ high-temperature observation of decagonal Al72Ni20Co8. We find that, at 1,100 K, a local anomaly of atomic vibrations becomes significant at specific atomic sites in the structure. The distribution of these localized vibrations is not random but well-correlated, with a quasiperiodic length scale of 2 nm. We are able to explain this feature by an anomalous temperature (Debye-Waller) factor for the Al atoms that sit at the phason-related sites defined within the framework of hyperspace crystallography. The present results therefore provide a direct observation of local thermal vibration anomalies in a solid.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature01337", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6921", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "421"
      }
    ], 
    "name": "Direct observation of a local thermal vibration anomaly in a quasicrystal", 
    "pagination": "347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52c44575ef2d9674dbb79af3bf944d91cebb3eba3bb9fdc4ab2dd5bcfbd52fd2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12540895"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01337"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017371962"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01337", 
      "https://app.dimensions.ai/details/publication/pub.1017371962"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature01337"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01337'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01337'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01337'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01337'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01337 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author Nf17b67e6c12c4c77a3c5f8efca3cab38
4 schema:citation sg:pub.10.1007/bf00239998
5 sg:pub.10.1038/23902
6 https://doi.org/10.1016/0304-3991(91)90004-p
7 https://doi.org/10.1016/0956-7151(92)90275-j
8 https://doi.org/10.1016/s0304-3991(00)00128-5
9 https://doi.org/10.1016/s0925-8388(02)00199-8
10 https://doi.org/10.1080/09500830050134381
11 https://doi.org/10.1080/095008396180452
12 https://doi.org/10.1103/physrevb.34.3345
13 https://doi.org/10.1103/physrevb.37.4458
14 https://doi.org/10.1103/physrevb.45.5228
15 https://doi.org/10.1103/physrevb.48.9394
16 https://doi.org/10.1103/physrevb.60.270
17 https://doi.org/10.1103/physrevb.63.014202
18 https://doi.org/10.1103/physrevlett.54.1517
19 https://doi.org/10.1103/physrevlett.75.89
20 https://doi.org/10.1103/physrevlett.81.5145
21 https://doi.org/10.1103/physrevlett.82.5273
22 https://doi.org/10.1103/physrevlett.82.572
23 https://doi.org/10.1103/physrevlett.84.4609
24 https://doi.org/10.1103/physrevlett.85.1674
25 https://doi.org/10.1103/physrevlett.86.1542
26 https://doi.org/10.1107/s0108767301007942
27 https://doi.org/10.1107/s0108767386099324
28 https://doi.org/10.1107/s0108767391004804
29 https://doi.org/10.1107/s0108767396000967
30 https://doi.org/10.1107/s0108768101018936
31 https://doi.org/10.1142/9789814503532_0002
32 https://doi.org/10.1142/9789814503532_0015
33 https://doi.org/10.1143/jjap.36.l1400
34 https://doi.org/10.1143/jpsj.72.1828
35 schema:datePublished 2003-01
36 schema:datePublishedReg 2003-01-01
37 schema:description Quasicrystals have long-range order with symmetries that are incompatible with periodicity, and are often described with reference to a higher-dimensional analogue of a periodic lattice. Within the context of this 'hyperspace' crystallography, lattice dynamics of quasicrystals can be described by a combination of lattice vibrations and atomic fluctuations--phonons and phasons. However, it is difficult to see localized fluctuations in a real-space quasicrystal structure, and so the nature of phason-related fluctuations and their contribution to thermodynamic stability are still not fully understood. Here we use atomic-resolution annular dark-field scanning transmission electron microscopy to map directly the change in thermal diffuse scattering intensity distribution in the quasicrystal, through in situ high-temperature observation of decagonal Al72Ni20Co8. We find that, at 1,100 K, a local anomaly of atomic vibrations becomes significant at specific atomic sites in the structure. The distribution of these localized vibrations is not random but well-correlated, with a quasiperiodic length scale of 2 nm. We are able to explain this feature by an anomalous temperature (Debye-Waller) factor for the Al atoms that sit at the phason-related sites defined within the framework of hyperspace crystallography. The present results therefore provide a direct observation of local thermal vibration anomalies in a solid.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N6aa8a6d92066460ea6c60ce1c4d89511
42 N978ff4404c0a42cca65f46956ded1640
43 sg:journal.1018957
44 schema:name Direct observation of a local thermal vibration anomaly in a quasicrystal
45 schema:pagination 347
46 schema:productId N0132b7fcc34a4ff9996a4709494de6dc
47 N185dad7d1a46446990b3531bcad0afbe
48 N5b202b7a80db4d92978ad2cefe3ed9a7
49 Na4065716bf0e4648bc7ca6fd416f605e
50 Nfdb43bd29fad464aa3c496ff44b13e37
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017371962
52 https://doi.org/10.1038/nature01337
53 schema:sdDatePublished 2019-04-11T12:27
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nf28cd435542c45cfa5da654900d83538
56 schema:url https://www.nature.com/articles/nature01337
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0132b7fcc34a4ff9996a4709494de6dc schema:name doi
61 schema:value 10.1038/nature01337
62 rdf:type schema:PropertyValue
63 N185dad7d1a46446990b3531bcad0afbe schema:name dimensions_id
64 schema:value pub.1017371962
65 rdf:type schema:PropertyValue
66 N5b202b7a80db4d92978ad2cefe3ed9a7 schema:name pubmed_id
67 schema:value 12540895
68 rdf:type schema:PropertyValue
69 N6aa8a6d92066460ea6c60ce1c4d89511 schema:volumeNumber 421
70 rdf:type schema:PublicationVolume
71 N88830d98890341178958342e76fd391b rdf:first sg:person.0702306474.28
72 rdf:rest Neefa1521ef604a5a88a7f021b1599250
73 N978ff4404c0a42cca65f46956ded1640 schema:issueNumber 6921
74 rdf:type schema:PublicationIssue
75 Na4065716bf0e4648bc7ca6fd416f605e schema:name nlm_unique_id
76 schema:value 0410462
77 rdf:type schema:PropertyValue
78 Neefa1521ef604a5a88a7f021b1599250 rdf:first sg:person.01250243226.66
79 rdf:rest rdf:nil
80 Nf17b67e6c12c4c77a3c5f8efca3cab38 rdf:first sg:person.0671243020.07
81 rdf:rest N88830d98890341178958342e76fd391b
82 Nf28cd435542c45cfa5da654900d83538 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nfdb43bd29fad464aa3c496ff44b13e37 schema:name readcube_id
85 schema:value 52c44575ef2d9674dbb79af3bf944d91cebb3eba3bb9fdc4ab2dd5bcfbd52fd2
86 rdf:type schema:PropertyValue
87 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
88 schema:name Earth Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
91 schema:name Geology
92 rdf:type schema:DefinedTerm
93 sg:journal.1018957 schema:issn 0090-0028
94 1476-4687
95 schema:name Nature
96 rdf:type schema:Periodical
97 sg:person.01250243226.66 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
98 schema:familyName Tsai
99 schema:givenName A. P.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250243226.66
101 rdf:type schema:Person
102 sg:person.0671243020.07 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
103 schema:familyName Abe
104 schema:givenName Eiji
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671243020.07
106 rdf:type schema:Person
107 sg:person.0702306474.28 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
108 schema:familyName Pennycook
109 schema:givenName S. J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702306474.28
111 rdf:type schema:Person
112 sg:pub.10.1007/bf00239998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045453197
113 https://doi.org/10.1007/bf00239998
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/23902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016657189
116 https://doi.org/10.1038/23902
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0304-3991(91)90004-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1012282274
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0956-7151(92)90275-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1045251612
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0304-3991(00)00128-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011796310
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0925-8388(02)00199-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034117864
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/09500830050134381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028237642
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/095008396180452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019549067
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.34.3345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540898
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.37.4458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545538
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.45.5228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561700
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.48.9394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569312
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.60.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593922
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.63.014202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598393
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.54.1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791266
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.75.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812485
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.81.5145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818616
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.82.5273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819670
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.82.572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819704
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.84.4609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021639946
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.85.1674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821730
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.86.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822587
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1107/s0108767301007942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010867139
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1107/s0108767386099324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021113510
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1107/s0108767391004804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002647766
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1107/s0108767396000967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007618535
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1107/s0108768101018936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026689693
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1142/9789814503532_0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088765668
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1142/9789814503532_0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088765681
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1143/jjap.36.l1400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063058781
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1143/jpsj.72.1828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063120656
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
177 schema:name *Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
180 schema:name *Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
181 †National Institute for Materials Science and SORST, Japan Science and Technology Corporation, 1-2-1 Sengen, Tsukuba 305-0047, Japan
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...