A globally coherent fingerprint of climate change impacts across natural systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-01

AUTHORS

Camille Parmesan, Gary Yohe

ABSTRACT

Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a ‘systematic trend’. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems. More... »

PAGES

37-42

References to SciGraph publications

  • 2000-08. Trends in phenological phases in Europe between 1951 and 1996 in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 1998-01-01. ⃛temperature and egg-laying trends in NATURE
  • 1994-09. Vascular plants as bioindicators of regional warming in Antarctica in OECOLOGIA
  • 1996-08. Climate and species' range in NATURE
  • 2001-06-01. Ecological effects of the North Atlantic Oscillation in OECOLOGIA
  • 1999-02. Growing season extended in Europe in NATURE
  • 1989-10. Reconstruction of tree-line vegetation response to long-term climate change in NATURE
  • 1995-03. Amphibian breeding and climate in NATURE
  • 1999-05. Birds extend their ranges northwards in NATURE
  • 1999-04. Biological response to climate change on a tropical mountain in NATURE
  • 1999-02. Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2001-04. Climate and amphibian declines in NATURE
  • 1999-06. Poleward shifts in geographical ranges of butterfly species associated with regional warming in NATURE
  • 2002-03. Ecological responses to recent climate change in NATURE
  • 1992-10-01. Zugzeiten und Zugmuster im Herbst: Einfluß des Treibhauseffekts auf den Vogelzug? in JOURNAL OF ORNITHOLOGY
  • 1998-01. Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands in OECOLOGIA
  • 1998-10. Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming in EVOLUTIONARY ECOLOGY
  • 1999-06. Climate change related to egg-laying trends in NATURE
  • 2001-11. Rapid responses of British butterflies to opposing forces of climate and habitat change in NATURE
  • 1994-06. Climate effects on mountain plants in NATURE
  • 2001-05. Ecological and evolutionary processes at expanding range margins in NATURE
  • 2001-05. Increasing shrub abundance in the Arctic in NATURE
  • 1997-08. UK birds are laying eggs earlier in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01286

    DOI

    http://dx.doi.org/10.1038/nature01286

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051074152

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12511946


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0501", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecological Applications", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon Dioxide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Greenhouse Effect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Population Dynamics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Probability", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Integrative Biology, Patterson Laboratories 141, University of Texas, 78712, Austin, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Integrative Biology, Patterson Laboratories 141, University of Texas, 78712, Austin, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parmesan", 
            "givenName": "Camille", 
            "id": "sg:person.0665115455.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665115455.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "John E. Andrus Professor of Economics, Wesleyan University, 238 Public Affairs Center, 06459, Middletown, Connecticut, USA", 
              "id": "http://www.grid.ac/institutes/grid.268117.b", 
              "name": [
                "John E. Andrus Professor of Economics, Wesleyan University, 238 Public Affairs Center, 06459, Middletown, Connecticut, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yohe", 
            "givenName": "Gary", 
            "id": "sg:person.012135205421.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135205421.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/19297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008776006", 
              "https://doi.org/10.1038/19297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004420100655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028078805", 
              "https://doi.org/10.1007/s004420100655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00627745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031183095", 
              "https://doi.org/10.1007/bf00627745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/34073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022216790", 
              "https://doi.org/10.1038/34073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004420050385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045822552", 
              "https://doi.org/10.1007/s004420050385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01640470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001270889", 
              "https://doi.org/10.1007/bf01640470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382765a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012192468", 
              "https://doi.org/10.1038/382765a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416389a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015998984", 
              "https://doi.org/10.1038/416389a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004840050094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029166691", 
              "https://doi.org/10.1007/s004840050094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35079180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002695922", 
              "https://doi.org/10.1038/35079180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006546616462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043467865", 
              "https://doi.org/10.1023/a:1006546616462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/374219a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001438083", 
              "https://doi.org/10.1038/374219a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048600002", 
              "https://doi.org/10.1038/20335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35079066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006334390", 
              "https://doi.org/10.1038/35079066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35070683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011541409", 
              "https://doi.org/10.1038/35070683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/17709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008925912", 
              "https://doi.org/10.1038/17709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369448a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041860683", 
              "https://doi.org/10.1038/369448a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004840000054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049048905", 
              "https://doi.org/10.1007/s004840000054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044473961", 
              "https://doi.org/10.1038/20839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35102054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052296653", 
              "https://doi.org/10.1038/35102054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/341429a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012340353", 
              "https://doi.org/10.1038/341429a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002853852", 
              "https://doi.org/10.1038/21181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/41453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009390774", 
              "https://doi.org/10.1038/41453"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-01", 
        "datePublishedReg": "2003-01-01", 
        "description": "Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a \u2018systematic trend\u2019. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1\u2009km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial \u2018sign-switching\u2019 responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates \u2018very high confidence\u2019 (as laid down by the IPCC) that climate change is already affecting living systems.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature01286", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6918", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "421"
          }
        ], 
        "keywords": [
          "climate change", 
          "biological trends", 
          "significant range shifts", 
          "climate change predictions", 
          "climate change impacts", 
          "suite of analyses", 
          "non-climatic influences", 
          "range shifts", 
          "change impacts", 
          "change predictions", 
          "natural systems", 
          "Intergovernmental Panel", 
          "spring events", 
          "climate trends", 
          "diverse species", 
          "species", 
          "biological changes", 
          "geographic regions", 
          "trends", 
          "changes", 
          "systematic trends", 
          "data sets", 
          "diagnostic fingerprints", 
          "suite", 
          "decades", 
          "diverse analyses", 
          "impact", 
          "living systems", 
          "fingerprints", 
          "shift", 
          "region", 
          "mean advancement", 
          "influence", 
          "analysis", 
          "prediction", 
          "response", 
          "system", 
          "differences", 
          "high confidence", 
          "events", 
          "debate", 
          "set", 
          "attribution", 
          "definition", 
          "confidence", 
          "days", 
          "advancement", 
          "underlying signal", 
          "poles", 
          "panel", 
          "signals", 
          "causal attributions"
        ], 
        "name": "A globally coherent fingerprint of climate change impacts across natural systems", 
        "pagination": "37-42", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051074152"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01286"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12511946"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01286", 
          "https://app.dimensions.ai/details/publication/pub.1051074152"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_361.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature01286"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01286'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01286'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01286'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01286'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      21 PREDICATES      112 URIs      81 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01286 schema:about N22440d286a414a1c95591ca0d5e36622
    2 N3c2153b82efa477f9ac299ccd3b44d52
    3 N47d06a25979442a7a70e795ca004f063
    4 N5b0453285fbd4e0a9aa15205f101f073
    5 N7a1c25f212f7470b85004d6781df200f
    6 N7f76bfcb9753492f936c527e67a2e954
    7 N84427038c5b44cabaff9cb3835562278
    8 N96c1171a91c24664b74b3cafa5f7ae2b
    9 N9a30134e998949e880480a99d94a6b2d
    10 Na600f60f268a465bbdda633567f84a1f
    11 Nd8cd6e858f9946e1a64d767b8729752a
    12 anzsrc-for:05
    13 anzsrc-for:0501
    14 schema:author N1e3a825077354d30bf076818439652dc
    15 schema:citation sg:pub.10.1007/bf00627745
    16 sg:pub.10.1007/bf01640470
    17 sg:pub.10.1007/s004420050385
    18 sg:pub.10.1007/s004420100655
    19 sg:pub.10.1007/s004840000054
    20 sg:pub.10.1007/s004840050094
    21 sg:pub.10.1023/a:1006546616462
    22 sg:pub.10.1038/17709
    23 sg:pub.10.1038/19297
    24 sg:pub.10.1038/20335
    25 sg:pub.10.1038/20839
    26 sg:pub.10.1038/21181
    27 sg:pub.10.1038/34073
    28 sg:pub.10.1038/341429a0
    29 sg:pub.10.1038/35070683
    30 sg:pub.10.1038/35079066
    31 sg:pub.10.1038/35079180
    32 sg:pub.10.1038/35102054
    33 sg:pub.10.1038/369448a0
    34 sg:pub.10.1038/374219a0
    35 sg:pub.10.1038/382765a0
    36 sg:pub.10.1038/41453
    37 sg:pub.10.1038/416389a
    38 schema:datePublished 2003-01
    39 schema:datePublishedReg 2003-01-01
    40 schema:description Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a ‘systematic trend’. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
    41 schema:genre article
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N4b3852f87fdd492ca2d746fda50b8e6a
    44 Na4311b0a54e448d7bc187f43629e1388
    45 sg:journal.1018957
    46 schema:keywords Intergovernmental Panel
    47 advancement
    48 analysis
    49 attribution
    50 biological changes
    51 biological trends
    52 causal attributions
    53 change impacts
    54 change predictions
    55 changes
    56 climate change
    57 climate change impacts
    58 climate change predictions
    59 climate trends
    60 confidence
    61 data sets
    62 days
    63 debate
    64 decades
    65 definition
    66 diagnostic fingerprints
    67 differences
    68 diverse analyses
    69 diverse species
    70 events
    71 fingerprints
    72 geographic regions
    73 high confidence
    74 impact
    75 influence
    76 living systems
    77 mean advancement
    78 natural systems
    79 non-climatic influences
    80 panel
    81 poles
    82 prediction
    83 range shifts
    84 region
    85 response
    86 set
    87 shift
    88 signals
    89 significant range shifts
    90 species
    91 spring events
    92 suite
    93 suite of analyses
    94 system
    95 systematic trends
    96 trends
    97 underlying signal
    98 schema:name A globally coherent fingerprint of climate change impacts across natural systems
    99 schema:pagination 37-42
    100 schema:productId N9e49e16a76b74fe0b7498338b5106553
    101 Nb59d3815d3c1456f8783d77fac53ebb4
    102 Ndd390dec87e649da85a2919891648f4d
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051074152
    104 https://doi.org/10.1038/nature01286
    105 schema:sdDatePublished 2022-11-24T20:50
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher Nd3fa67a7a143456ca4e9cbf68b80ad00
    108 schema:url https://doi.org/10.1038/nature01286
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N1e3a825077354d30bf076818439652dc rdf:first sg:person.0665115455.56
    113 rdf:rest Ne93cc78c979645dcbee8c9f9f8eb8cd8
    114 N22440d286a414a1c95591ca0d5e36622 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Probability
    116 rdf:type schema:DefinedTerm
    117 N3c2153b82efa477f9ac299ccd3b44d52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Carbon Dioxide
    119 rdf:type schema:DefinedTerm
    120 N47d06a25979442a7a70e795ca004f063 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Biological Evolution
    122 rdf:type schema:DefinedTerm
    123 N4b3852f87fdd492ca2d746fda50b8e6a schema:issueNumber 6918
    124 rdf:type schema:PublicationIssue
    125 N5b0453285fbd4e0a9aa15205f101f073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Population Dynamics
    127 rdf:type schema:DefinedTerm
    128 N7a1c25f212f7470b85004d6781df200f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Ecosystem
    130 rdf:type schema:DefinedTerm
    131 N7f76bfcb9753492f936c527e67a2e954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Geography
    133 rdf:type schema:DefinedTerm
    134 N84427038c5b44cabaff9cb3835562278 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Greenhouse Effect
    136 rdf:type schema:DefinedTerm
    137 N96c1171a91c24664b74b3cafa5f7ae2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Climate
    139 rdf:type schema:DefinedTerm
    140 N9a30134e998949e880480a99d94a6b2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Animals
    142 rdf:type schema:DefinedTerm
    143 N9e49e16a76b74fe0b7498338b5106553 schema:name doi
    144 schema:value 10.1038/nature01286
    145 rdf:type schema:PropertyValue
    146 Na4311b0a54e448d7bc187f43629e1388 schema:volumeNumber 421
    147 rdf:type schema:PublicationVolume
    148 Na600f60f268a465bbdda633567f84a1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Models, Theoretical
    150 rdf:type schema:DefinedTerm
    151 Nb59d3815d3c1456f8783d77fac53ebb4 schema:name dimensions_id
    152 schema:value pub.1051074152
    153 rdf:type schema:PropertyValue
    154 Nd3fa67a7a143456ca4e9cbf68b80ad00 schema:name Springer Nature - SN SciGraph project
    155 rdf:type schema:Organization
    156 Nd8cd6e858f9946e1a64d767b8729752a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Databases, Factual
    158 rdf:type schema:DefinedTerm
    159 Ndd390dec87e649da85a2919891648f4d schema:name pubmed_id
    160 schema:value 12511946
    161 rdf:type schema:PropertyValue
    162 Ne93cc78c979645dcbee8c9f9f8eb8cd8 rdf:first sg:person.012135205421.87
    163 rdf:rest rdf:nil
    164 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Environmental Sciences
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:0501 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Ecological Applications
    169 rdf:type schema:DefinedTerm
    170 sg:journal.1018957 schema:issn 0028-0836
    171 1476-4687
    172 schema:name Nature
    173 schema:publisher Springer Nature
    174 rdf:type schema:Periodical
    175 sg:person.012135205421.87 schema:affiliation grid-institutes:grid.268117.b
    176 schema:familyName Yohe
    177 schema:givenName Gary
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135205421.87
    179 rdf:type schema:Person
    180 sg:person.0665115455.56 schema:affiliation grid-institutes:grid.89336.37
    181 schema:familyName Parmesan
    182 schema:givenName Camille
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665115455.56
    184 rdf:type schema:Person
    185 sg:pub.10.1007/bf00627745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031183095
    186 https://doi.org/10.1007/bf00627745
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/bf01640470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001270889
    189 https://doi.org/10.1007/bf01640470
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s004420050385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045822552
    192 https://doi.org/10.1007/s004420050385
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s004420100655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078805
    195 https://doi.org/10.1007/s004420100655
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s004840000054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049048905
    198 https://doi.org/10.1007/s004840000054
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s004840050094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029166691
    201 https://doi.org/10.1007/s004840050094
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1023/a:1006546616462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043467865
    204 https://doi.org/10.1023/a:1006546616462
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/17709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008925912
    207 https://doi.org/10.1038/17709
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/19297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008776006
    210 https://doi.org/10.1038/19297
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/20335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048600002
    213 https://doi.org/10.1038/20335
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/20839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473961
    216 https://doi.org/10.1038/20839
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/21181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002853852
    219 https://doi.org/10.1038/21181
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/34073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022216790
    222 https://doi.org/10.1038/34073
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/341429a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012340353
    225 https://doi.org/10.1038/341429a0
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/35070683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011541409
    228 https://doi.org/10.1038/35070683
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/35079066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006334390
    231 https://doi.org/10.1038/35079066
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/35079180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695922
    234 https://doi.org/10.1038/35079180
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/35102054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052296653
    237 https://doi.org/10.1038/35102054
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/369448a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041860683
    240 https://doi.org/10.1038/369448a0
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/374219a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001438083
    243 https://doi.org/10.1038/374219a0
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/382765a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012192468
    246 https://doi.org/10.1038/382765a0
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/41453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009390774
    249 https://doi.org/10.1038/41453
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/416389a schema:sameAs https://app.dimensions.ai/details/publication/pub.1015998984
    252 https://doi.org/10.1038/416389a
    253 rdf:type schema:CreativeWork
    254 grid-institutes:grid.268117.b schema:alternateName John E. Andrus Professor of Economics, Wesleyan University, 238 Public Affairs Center, 06459, Middletown, Connecticut, USA
    255 schema:name John E. Andrus Professor of Economics, Wesleyan University, 238 Public Affairs Center, 06459, Middletown, Connecticut, USA
    256 rdf:type schema:Organization
    257 grid-institutes:grid.89336.37 schema:alternateName Integrative Biology, Patterson Laboratories 141, University of Texas, 78712, Austin, Texas, USA
    258 schema:name Integrative Biology, Patterson Laboratories 141, University of Texas, 78712, Austin, Texas, USA
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...