Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-11

AUTHORS

Juan Burrone, Michael O'Byrne, Venkatesh N. Murthy

ABSTRACT

The rules by which neuronal activity causes long-term modification of synapses in the central nervous system are not fully understood. Whereas competitive or correlation-based rules result in local modification of synapses, homeostatic modifications allow neuron-wide changes in synaptic strength, promoting stability1,2. Experimental investigations of these rules at central nervous system synapses have relied generally on manipulating activity in populations of neurons1,3,4,5,6. Here, we investigated the effect of suppressing excitability in single neurons within a network of active hippocampal neurons by overexpressing an inward-rectifier potassium channel. Reducing activity in a neuron before synapse formation leads to a reduction in functional synaptic inputs to that neuron; no such reduction was observed when activity of all neurons was uniformly suppressed. In contrast, suppressing activity in a single neuron after synapses are established results in a homeostatic increase in synaptic input, which restores the activity of the neuron to control levels. Our results highlight the differences between global and selective suppression of activity, as well as those between early and late manipulation of activity. More... »

PAGES

414-418

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01242

DOI

http://dx.doi.org/10.1038/nature01242

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039339513

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12459783


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Excitatory Postsynaptic Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hippocampus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homeostasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Inhibition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patch-Clamp Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium Channels, Inwardly Rectifying", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tetrodotoxin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burrone", 
        "givenName": "Juan", 
        "id": "sg:person.0635072430.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635072430.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O'Byrne", 
        "givenName": "Michael", 
        "id": "sg:person.01065320671.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065320671.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murthy", 
        "givenName": "Venkatesh N.", 
        "id": "sg:person.0634645527.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634645527.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042728470", 
          "https://doi.org/10.1038/16051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/15964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047967456", 
          "https://doi.org/10.1038/15964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042452005", 
          "https://doi.org/10.1038/4540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/36103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033478989", 
          "https://doi.org/10.1038/36103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375400a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034469751", 
          "https://doi.org/10.1038/375400a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/372519a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034296973", 
          "https://doi.org/10.1038/372519a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016811928", 
          "https://doi.org/10.1038/75714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-11", 
    "datePublishedReg": "2002-11-01", 
    "description": "The rules by which neuronal activity causes long-term modification of synapses in the central nervous system are not fully understood. Whereas competitive or correlation-based rules result in local modification of synapses, homeostatic modifications allow neuron-wide changes in synaptic strength, promoting stability1,2. Experimental investigations of these rules at central nervous system synapses have relied generally on manipulating activity in populations of neurons1,3,4,5,6. Here, we investigated the effect of suppressing excitability in single neurons within a network of active hippocampal neurons by overexpressing an inward-rectifier potassium channel. Reducing activity in a neuron before synapse formation leads to a reduction in functional synaptic inputs to that neuron; no such reduction was observed when activity of all neurons was uniformly suppressed. In contrast, suppressing activity in a single neuron after synapses are established results in a homeostatic increase in synaptic input, which restores the activity of the neuron to control levels. Our results highlight the differences between global and selective suppression of activity, as well as those between early and late manipulation of activity.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature01242", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6914", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "420"
      }
    ], 
    "keywords": [
      "synaptic inputs", 
      "active hippocampal neurons", 
      "functional synaptic inputs", 
      "single neurons", 
      "central nervous system", 
      "selective suppression", 
      "central nervous system synapses", 
      "correlation-based rules", 
      "inward rectifier potassium channel", 
      "long-term modifications", 
      "homeostatic increase", 
      "hippocampal neurons", 
      "neuronal activity", 
      "nervous system", 
      "homeostatic modification", 
      "synaptic plasticity", 
      "synapse formation", 
      "synaptic strength", 
      "neurons", 
      "potassium channels", 
      "individual neurons", 
      "synapses", 
      "later manipulation", 
      "activity", 
      "suppression", 
      "excitability", 
      "such reduction", 
      "reduction", 
      "multiple forms", 
      "population", 
      "levels", 
      "differences", 
      "plasticity", 
      "increase", 
      "contrast", 
      "effect", 
      "modification", 
      "changes", 
      "results", 
      "manipulation", 
      "investigation", 
      "form", 
      "formation", 
      "channels", 
      "input", 
      "system", 
      "strength", 
      "local modification", 
      "network", 
      "rules", 
      "experimental investigation"
    ], 
    "name": "Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons", 
    "pagination": "414-418", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039339513"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01242"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12459783"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01242", 
      "https://app.dimensions.ai/details/publication/pub.1039339513"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_361.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature01242"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01242'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01242'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01242'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01242'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      98 URIs      82 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01242 schema:about N03a01750308b438a804e234268f7302c
2 N0fce4781d979472a9759fe468b24205c
3 N25daf1f177b041ed8dbb7e5b4477023f
4 N4429f9b9ceae4153b560e4eeac99ff0f
5 N5f406b640f5d4b71b4e933c4f4fd5abe
6 N8f06a39f6c8441c29e92ceff509b161e
7 Na9757252620a4c4d9ba158a1776666bd
8 Nb5b4b7208507435b897198c4b2f21d18
9 Nbcddf48c76804b2883f6b5e727a2c6bb
10 Nc7e3018f133d4ea6a588fc4acca097bb
11 Ndce4d4575fe2482fa4aab29b8360b04d
12 Ne256f0b42ba1400ab8dafd4223fa3868
13 Ne854cfc189a24c5e8fa950ac288c921f
14 anzsrc-for:11
15 anzsrc-for:1109
16 schema:author Naea7e80729454363bdf3e34d1503bfcc
17 schema:citation sg:pub.10.1038/15964
18 sg:pub.10.1038/16051
19 sg:pub.10.1038/36103
20 sg:pub.10.1038/372519a0
21 sg:pub.10.1038/375400a0
22 sg:pub.10.1038/4540
23 sg:pub.10.1038/75714
24 sg:pub.10.1038/81453
25 schema:datePublished 2002-11
26 schema:datePublishedReg 2002-11-01
27 schema:description The rules by which neuronal activity causes long-term modification of synapses in the central nervous system are not fully understood. Whereas competitive or correlation-based rules result in local modification of synapses, homeostatic modifications allow neuron-wide changes in synaptic strength, promoting stability1,2. Experimental investigations of these rules at central nervous system synapses have relied generally on manipulating activity in populations of neurons1,3,4,5,6. Here, we investigated the effect of suppressing excitability in single neurons within a network of active hippocampal neurons by overexpressing an inward-rectifier potassium channel. Reducing activity in a neuron before synapse formation leads to a reduction in functional synaptic inputs to that neuron; no such reduction was observed when activity of all neurons was uniformly suppressed. In contrast, suppressing activity in a single neuron after synapses are established results in a homeostatic increase in synaptic input, which restores the activity of the neuron to control levels. Our results highlight the differences between global and selective suppression of activity, as well as those between early and late manipulation of activity.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf Nb70c958a1c0c4eb8835ddd600362d89a
31 Nf8b22f7e78154d36a42de94df9c868bb
32 sg:journal.1018957
33 schema:keywords active hippocampal neurons
34 activity
35 central nervous system
36 central nervous system synapses
37 changes
38 channels
39 contrast
40 correlation-based rules
41 differences
42 effect
43 excitability
44 experimental investigation
45 form
46 formation
47 functional synaptic inputs
48 hippocampal neurons
49 homeostatic increase
50 homeostatic modification
51 increase
52 individual neurons
53 input
54 investigation
55 inward rectifier potassium channel
56 later manipulation
57 levels
58 local modification
59 long-term modifications
60 manipulation
61 modification
62 multiple forms
63 nervous system
64 network
65 neuronal activity
66 neurons
67 plasticity
68 population
69 potassium channels
70 reduction
71 results
72 rules
73 selective suppression
74 single neurons
75 strength
76 such reduction
77 suppression
78 synapse formation
79 synapses
80 synaptic inputs
81 synaptic plasticity
82 synaptic strength
83 system
84 schema:name Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons
85 schema:pagination 414-418
86 schema:productId N56f07d0935b246a6a1635ab046904eff
87 N86c113142ebf42cca928edbcad80f874
88 Ne253a4a639444a399764a0dba01e9d2c
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039339513
90 https://doi.org/10.1038/nature01242
91 schema:sdDatePublished 2022-09-02T15:49
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Ndbb88f5043b2460980acaf622d5ca59f
94 schema:url https://doi.org/10.1038/nature01242
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N03a01750308b438a804e234268f7302c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Humans
100 rdf:type schema:DefinedTerm
101 N0fce4781d979472a9759fe468b24205c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Potassium Channels, Inwardly Rectifying
103 rdf:type schema:DefinedTerm
104 N25daf1f177b041ed8dbb7e5b4477023f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Neuronal Plasticity
106 rdf:type schema:DefinedTerm
107 N4429f9b9ceae4153b560e4eeac99ff0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Action Potentials
109 rdf:type schema:DefinedTerm
110 N56f07d0935b246a6a1635ab046904eff schema:name dimensions_id
111 schema:value pub.1039339513
112 rdf:type schema:PropertyValue
113 N5f406b640f5d4b71b4e933c4f4fd5abe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Hippocampus
115 rdf:type schema:DefinedTerm
116 N66b51425d1b743f689239a1a8cfcfb65 rdf:first sg:person.01065320671.17
117 rdf:rest Na7ad5ad801814fffa2a8f6d55e55949a
118 N86c113142ebf42cca928edbcad80f874 schema:name doi
119 schema:value 10.1038/nature01242
120 rdf:type schema:PropertyValue
121 N8f06a39f6c8441c29e92ceff509b161e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Homeostasis
123 rdf:type schema:DefinedTerm
124 Na7ad5ad801814fffa2a8f6d55e55949a rdf:first sg:person.0634645527.04
125 rdf:rest rdf:nil
126 Na9757252620a4c4d9ba158a1776666bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Neural Inhibition
128 rdf:type schema:DefinedTerm
129 Naea7e80729454363bdf3e34d1503bfcc rdf:first sg:person.0635072430.00
130 rdf:rest N66b51425d1b743f689239a1a8cfcfb65
131 Nb5b4b7208507435b897198c4b2f21d18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Neurons
133 rdf:type schema:DefinedTerm
134 Nb70c958a1c0c4eb8835ddd600362d89a schema:volumeNumber 420
135 rdf:type schema:PublicationVolume
136 Nbcddf48c76804b2883f6b5e727a2c6bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Tetrodotoxin
138 rdf:type schema:DefinedTerm
139 Nc7e3018f133d4ea6a588fc4acca097bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Cells, Cultured
141 rdf:type schema:DefinedTerm
142 Ndbb88f5043b2460980acaf622d5ca59f schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Ndce4d4575fe2482fa4aab29b8360b04d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Synapses
146 rdf:type schema:DefinedTerm
147 Ne253a4a639444a399764a0dba01e9d2c schema:name pubmed_id
148 schema:value 12459783
149 rdf:type schema:PropertyValue
150 Ne256f0b42ba1400ab8dafd4223fa3868 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Excitatory Postsynaptic Potentials
152 rdf:type schema:DefinedTerm
153 Ne854cfc189a24c5e8fa950ac288c921f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Patch-Clamp Techniques
155 rdf:type schema:DefinedTerm
156 Nf8b22f7e78154d36a42de94df9c868bb schema:issueNumber 6914
157 rdf:type schema:PublicationIssue
158 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
159 schema:name Medical and Health Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
162 schema:name Neurosciences
163 rdf:type schema:DefinedTerm
164 sg:journal.1018957 schema:issn 0028-0836
165 1476-4687
166 schema:name Nature
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.01065320671.17 schema:affiliation grid-institutes:grid.38142.3c
170 schema:familyName O'Byrne
171 schema:givenName Michael
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065320671.17
173 rdf:type schema:Person
174 sg:person.0634645527.04 schema:affiliation grid-institutes:grid.38142.3c
175 schema:familyName Murthy
176 schema:givenName Venkatesh N.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634645527.04
178 rdf:type schema:Person
179 sg:person.0635072430.00 schema:affiliation grid-institutes:grid.38142.3c
180 schema:familyName Burrone
181 schema:givenName Juan
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635072430.00
183 rdf:type schema:Person
184 sg:pub.10.1038/15964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047967456
185 https://doi.org/10.1038/15964
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/16051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042728470
188 https://doi.org/10.1038/16051
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/36103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033478989
191 https://doi.org/10.1038/36103
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/372519a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034296973
194 https://doi.org/10.1038/372519a0
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/375400a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034469751
197 https://doi.org/10.1038/375400a0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/4540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042452005
200 https://doi.org/10.1038/4540
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/75714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016811928
203 https://doi.org/10.1038/75714
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/81453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869026
206 https://doi.org/10.1038/81453
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.38142.3c schema:alternateName Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA
209 schema:name Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...