Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-11

AUTHORS

Juan Burrone, Michael O'Byrne, Venkatesh N. Murthy

ABSTRACT

The rules by which neuronal activity causes long-term modification of synapses in the central nervous system are not fully understood. Whereas competitive or correlation-based rules result in local modification of synapses, homeostatic modifications allow neuron-wide changes in synaptic strength, promoting stability1,2. Experimental investigations of these rules at central nervous system synapses have relied generally on manipulating activity in populations of neurons1,3,4,5,6. Here, we investigated the effect of suppressing excitability in single neurons within a network of active hippocampal neurons by overexpressing an inward-rectifier potassium channel. Reducing activity in a neuron before synapse formation leads to a reduction in functional synaptic inputs to that neuron; no such reduction was observed when activity of all neurons was uniformly suppressed. In contrast, suppressing activity in a single neuron after synapses are established results in a homeostatic increase in synaptic input, which restores the activity of the neuron to control levels. Our results highlight the differences between global and selective suppression of activity, as well as those between early and late manipulation of activity. More... »

PAGES

414-418

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01242

DOI

http://dx.doi.org/10.1038/nature01242

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039339513

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12459783


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Excitatory Postsynaptic Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hippocampus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homeostasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Inhibition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patch-Clamp Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium Channels, Inwardly Rectifying", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tetrodotoxin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burrone", 
        "givenName": "Juan", 
        "id": "sg:person.0635072430.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635072430.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O'Byrne", 
        "givenName": "Michael", 
        "id": "sg:person.01065320671.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065320671.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murthy", 
        "givenName": "Venkatesh N.", 
        "id": "sg:person.0634645527.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634645527.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042728470", 
          "https://doi.org/10.1038/16051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/15964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047967456", 
          "https://doi.org/10.1038/15964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042452005", 
          "https://doi.org/10.1038/4540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/36103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033478989", 
          "https://doi.org/10.1038/36103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375400a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034469751", 
          "https://doi.org/10.1038/375400a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/372519a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034296973", 
          "https://doi.org/10.1038/372519a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016811928", 
          "https://doi.org/10.1038/75714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-11", 
    "datePublishedReg": "2002-11-01", 
    "description": "The rules by which neuronal activity causes long-term modification of synapses in the central nervous system are not fully understood. Whereas competitive or correlation-based rules result in local modification of synapses, homeostatic modifications allow neuron-wide changes in synaptic strength, promoting stability1,2. Experimental investigations of these rules at central nervous system synapses have relied generally on manipulating activity in populations of neurons1,3,4,5,6. Here, we investigated the effect of suppressing excitability in single neurons within a network of active hippocampal neurons by overexpressing an inward-rectifier potassium channel. Reducing activity in a neuron before synapse formation leads to a reduction in functional synaptic inputs to that neuron; no such reduction was observed when activity of all neurons was uniformly suppressed. In contrast, suppressing activity in a single neuron after synapses are established results in a homeostatic increase in synaptic input, which restores the activity of the neuron to control levels. Our results highlight the differences between global and selective suppression of activity, as well as those between early and late manipulation of activity.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature01242", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6914", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "420"
      }
    ], 
    "keywords": [
      "synaptic inputs", 
      "active hippocampal neurons", 
      "functional synaptic inputs", 
      "single neurons", 
      "central nervous system", 
      "selective suppression", 
      "central nervous system synapses", 
      "correlation-based rules", 
      "inward rectifier potassium channel", 
      "long-term modifications", 
      "homeostatic increase", 
      "hippocampal neurons", 
      "neuronal activity", 
      "nervous system", 
      "homeostatic modification", 
      "synaptic plasticity", 
      "synapse formation", 
      "synaptic strength", 
      "neurons", 
      "potassium channels", 
      "individual neurons", 
      "synapses", 
      "later manipulation", 
      "activity", 
      "suppression", 
      "excitability", 
      "such reduction", 
      "reduction", 
      "multiple forms", 
      "population", 
      "levels", 
      "differences", 
      "plasticity", 
      "increase", 
      "contrast", 
      "effect", 
      "modification", 
      "changes", 
      "results", 
      "manipulation", 
      "investigation", 
      "form", 
      "formation", 
      "channels", 
      "input", 
      "system", 
      "strength", 
      "local modification", 
      "network", 
      "rules", 
      "experimental investigation"
    ], 
    "name": "Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons", 
    "pagination": "414-418", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039339513"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01242"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12459783"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01242", 
      "https://app.dimensions.ai/details/publication/pub.1039339513"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_361.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature01242"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01242'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01242'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01242'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01242'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      98 URIs      82 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01242 schema:about N06f2eea097b14907a3d0cac054097b9a
2 N0cfe25cc01ac4a54b4b751f74f4e4cbb
3 N5b43161387bd486295ff9b79cfd864a3
4 N7ea367c8cbb844b3bc7c9ed77769c5b8
5 N8b49d91b3c4042f991d722986eb853fa
6 N9b6d658d03a8433e9e508d6bdab0ec17
7 N9d30abf16111426c89ba38c2a62695c3
8 Nac02792fe6ba42eb82522d0ffa3db5d1
9 Nb4c02c64eff94c20ba73d0a8c9d1d5b5
10 Nc8682d28e20541149537b2a2bb369261
11 Nd324290341d144a298e62cb455da5152
12 Ne9a5053951c8407eb276b147ce61ecc8
13 Nfa85a21d55ba4232b5beff988a1e6fd4
14 anzsrc-for:11
15 anzsrc-for:1109
16 schema:author N187c824aa1cc4f01a8b5c5225f9ea425
17 schema:citation sg:pub.10.1038/15964
18 sg:pub.10.1038/16051
19 sg:pub.10.1038/36103
20 sg:pub.10.1038/372519a0
21 sg:pub.10.1038/375400a0
22 sg:pub.10.1038/4540
23 sg:pub.10.1038/75714
24 sg:pub.10.1038/81453
25 schema:datePublished 2002-11
26 schema:datePublishedReg 2002-11-01
27 schema:description The rules by which neuronal activity causes long-term modification of synapses in the central nervous system are not fully understood. Whereas competitive or correlation-based rules result in local modification of synapses, homeostatic modifications allow neuron-wide changes in synaptic strength, promoting stability1,2. Experimental investigations of these rules at central nervous system synapses have relied generally on manipulating activity in populations of neurons1,3,4,5,6. Here, we investigated the effect of suppressing excitability in single neurons within a network of active hippocampal neurons by overexpressing an inward-rectifier potassium channel. Reducing activity in a neuron before synapse formation leads to a reduction in functional synaptic inputs to that neuron; no such reduction was observed when activity of all neurons was uniformly suppressed. In contrast, suppressing activity in a single neuron after synapses are established results in a homeostatic increase in synaptic input, which restores the activity of the neuron to control levels. Our results highlight the differences between global and selective suppression of activity, as well as those between early and late manipulation of activity.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N81f46e5f888245d49554abf344ad2d07
31 Nceb113739ee542b5ad6e56392c202874
32 sg:journal.1018957
33 schema:keywords active hippocampal neurons
34 activity
35 central nervous system
36 central nervous system synapses
37 changes
38 channels
39 contrast
40 correlation-based rules
41 differences
42 effect
43 excitability
44 experimental investigation
45 form
46 formation
47 functional synaptic inputs
48 hippocampal neurons
49 homeostatic increase
50 homeostatic modification
51 increase
52 individual neurons
53 input
54 investigation
55 inward rectifier potassium channel
56 later manipulation
57 levels
58 local modification
59 long-term modifications
60 manipulation
61 modification
62 multiple forms
63 nervous system
64 network
65 neuronal activity
66 neurons
67 plasticity
68 population
69 potassium channels
70 reduction
71 results
72 rules
73 selective suppression
74 single neurons
75 strength
76 such reduction
77 suppression
78 synapse formation
79 synapses
80 synaptic inputs
81 synaptic plasticity
82 synaptic strength
83 system
84 schema:name Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons
85 schema:pagination 414-418
86 schema:productId N0e3181aa10224d08a79e4accd0505f75
87 N1ef541f6b688457a8209e7d77b7f127a
88 Nb8ddc7c219a14f51a841c8538485ecda
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039339513
90 https://doi.org/10.1038/nature01242
91 schema:sdDatePublished 2022-09-02T15:49
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nc234c13ed70f4a09b7be9ecf1d7155b7
94 schema:url https://doi.org/10.1038/nature01242
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N06f2eea097b14907a3d0cac054097b9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Action Potentials
100 rdf:type schema:DefinedTerm
101 N0cfe25cc01ac4a54b4b751f74f4e4cbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Tetrodotoxin
103 rdf:type schema:DefinedTerm
104 N0e3181aa10224d08a79e4accd0505f75 schema:name doi
105 schema:value 10.1038/nature01242
106 rdf:type schema:PropertyValue
107 N187c824aa1cc4f01a8b5c5225f9ea425 rdf:first sg:person.0635072430.00
108 rdf:rest N8b05add668d44e9b8990cf1f82634a64
109 N1ef541f6b688457a8209e7d77b7f127a schema:name dimensions_id
110 schema:value pub.1039339513
111 rdf:type schema:PropertyValue
112 N5b43161387bd486295ff9b79cfd864a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Patch-Clamp Techniques
114 rdf:type schema:DefinedTerm
115 N749d4bc5d70e437f9e33e31c08489bb5 rdf:first sg:person.0634645527.04
116 rdf:rest rdf:nil
117 N7ea367c8cbb844b3bc7c9ed77769c5b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Neural Inhibition
119 rdf:type schema:DefinedTerm
120 N81f46e5f888245d49554abf344ad2d07 schema:volumeNumber 420
121 rdf:type schema:PublicationVolume
122 N8b05add668d44e9b8990cf1f82634a64 rdf:first sg:person.01065320671.17
123 rdf:rest N749d4bc5d70e437f9e33e31c08489bb5
124 N8b49d91b3c4042f991d722986eb853fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Synapses
126 rdf:type schema:DefinedTerm
127 N9b6d658d03a8433e9e508d6bdab0ec17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Neuronal Plasticity
129 rdf:type schema:DefinedTerm
130 N9d30abf16111426c89ba38c2a62695c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Cells, Cultured
132 rdf:type schema:DefinedTerm
133 Nac02792fe6ba42eb82522d0ffa3db5d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Hippocampus
135 rdf:type schema:DefinedTerm
136 Nb4c02c64eff94c20ba73d0a8c9d1d5b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 Nb8ddc7c219a14f51a841c8538485ecda schema:name pubmed_id
140 schema:value 12459783
141 rdf:type schema:PropertyValue
142 Nc234c13ed70f4a09b7be9ecf1d7155b7 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nc8682d28e20541149537b2a2bb369261 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Potassium Channels, Inwardly Rectifying
146 rdf:type schema:DefinedTerm
147 Nceb113739ee542b5ad6e56392c202874 schema:issueNumber 6914
148 rdf:type schema:PublicationIssue
149 Nd324290341d144a298e62cb455da5152 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Homeostasis
151 rdf:type schema:DefinedTerm
152 Ne9a5053951c8407eb276b147ce61ecc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Excitatory Postsynaptic Potentials
154 rdf:type schema:DefinedTerm
155 Nfa85a21d55ba4232b5beff988a1e6fd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Neurons
157 rdf:type schema:DefinedTerm
158 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
159 schema:name Medical and Health Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
162 schema:name Neurosciences
163 rdf:type schema:DefinedTerm
164 sg:journal.1018957 schema:issn 0028-0836
165 1476-4687
166 schema:name Nature
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.01065320671.17 schema:affiliation grid-institutes:grid.38142.3c
170 schema:familyName O'Byrne
171 schema:givenName Michael
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065320671.17
173 rdf:type schema:Person
174 sg:person.0634645527.04 schema:affiliation grid-institutes:grid.38142.3c
175 schema:familyName Murthy
176 schema:givenName Venkatesh N.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634645527.04
178 rdf:type schema:Person
179 sg:person.0635072430.00 schema:affiliation grid-institutes:grid.38142.3c
180 schema:familyName Burrone
181 schema:givenName Juan
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635072430.00
183 rdf:type schema:Person
184 sg:pub.10.1038/15964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047967456
185 https://doi.org/10.1038/15964
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/16051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042728470
188 https://doi.org/10.1038/16051
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/36103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033478989
191 https://doi.org/10.1038/36103
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/372519a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034296973
194 https://doi.org/10.1038/372519a0
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/375400a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034469751
197 https://doi.org/10.1038/375400a0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/4540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042452005
200 https://doi.org/10.1038/4540
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/75714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016811928
203 https://doi.org/10.1038/75714
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/81453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869026
206 https://doi.org/10.1038/81453
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.38142.3c schema:alternateName Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA
209 schema:name Department of Molecular & Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...