Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-11

AUTHORS

Rafael U. Ibarra, Jeremy S. Edwards, Bernhard O. Palsson

ABSTRACT

Annotated genome sequences can be used to reconstruct whole-cell metabolic networks. These metabolic networks can be modelled and analysed (computed) to study complex biological functions. In particular, constraints-based in silico models have been used to calculate optimal growth rates on common carbon substrates, and the results were found to be consistent with experimental data under many but not all conditions. Optimal biological functions are acquired through an evolutionary process. Thus, incorrect predictions of in silico models based on optimal performance criteria may be due to incomplete adaptive evolution under the conditions examined. Escherichia coli K-12 MG1655 grows sub-optimally on glycerol as the sole carbon source. Here we show that when placed under growth selection pressure, the growth rate of E. coli on glycerol reproducibly evolved over 40 days, or about 700 generations, from a sub-optimal value to the optimal growth rate predicted from a whole-cell in silico model. These results open the possibility of using adaptive evolution of entire metabolic networks to realize metabolic states that have been determined a priori based on in silico analysis. More... »

PAGES

186

Journal

TITLE

Nature

ISSUE

6912

VOLUME

420

Related Patents

  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms For Producing Butadiene And Methods Related Thereto
  • Microorganisms And Methods For The Co-Production Of Isopropanol And 1,4-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Primary Alcohol Producing Organisms
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Flux Balance Analysis With Molecular Crowding
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For Production Of 4-Hydroxybutyrate, 1,4-Butanediol And Related Compounds
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Method And System For Modeling Cellular Metabolism
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms And Methods For The Biosynthesis Of Propylene
  • Fermentation Of Glycerol To Organic Acids
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Designing Synthetic Biological Circuits Using Optimality And Nonequilibrium Thermodynamics
  • Method For Determining Metabolic Flux
  • Process Of Separating Components Of A Fermentation Broth
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods For The Synthesis Of Olefins And Derivatives
  • Microorganisms And Methods For Carbon-Efficient Biosynthesis Of Mek And 2-Butanol
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms For The Production Of 2-Hydroxyisobutyric Acid
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Microorganisms For Producing Butadiene And Methods Related Thereto
  • Method And System For Modeling Cellular Metabolism
  • Organisms For The Production Of 1,3-Butanediol
  • Microbial Organisms Comprising Exogenous Nucleic Acids Encoding Reductive Tca Pathway Enzymes
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Method For Determining Gene Knockouts
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Microorganisms For The Production Of 1,4-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Flux Balance Analysis With Molecular Crowding
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Method For Determining Metabolic Flux Affecting Substance Production
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Primary Alcohol Producing Organisms
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods For Increasing Product Yields
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Microorganisms For The Production Of 1,4-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Organisms For The Production Of Isopropanol, N-Butanol, And Isobutanol
  • Primary Alcohol Producing Organisms
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Method For Determining Gene Knockouts
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature01149

    DOI

    http://dx.doi.org/10.1038/nature01149

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025902533

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12432395


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acetic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptation, Physiological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycerol", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Malates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Succinic Acid", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "*Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ibarra", 
            "givenName": "Rafael U.", 
            "id": "sg:person.01066771374.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066771374.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delaware", 
              "id": "https://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "\u2021Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Edwards", 
            "givenName": "Jeremy S.", 
            "id": "sg:person.013621313027.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621313027.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "*Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palsson", 
            "givenName": "Bernhard O.", 
            "id": "sg:person.011260472057.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260472057.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.277.5331.1453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003267570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.10047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003836798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.10.5528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005244921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007406550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-1119(97)00307-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008168362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011471610", 
              "https://doi.org/10.1038/81125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011471610", 
              "https://doi.org/10.1038/81125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/84379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015458337", 
              "https://doi.org/10.1038/84379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/84379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015458337", 
              "https://doi.org/10.1038/84379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.184.16.4582-4593.2002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017218170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7799(97)01067-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019774568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/73786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021112891", 
              "https://doi.org/10.1038/73786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/73786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021112891", 
              "https://doi.org/10.1038/73786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1094-994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021388132", 
              "https://doi.org/10.1038/nbt1094-994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-1656(01)00418-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026546617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-0004(00)01754-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031798241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/15.1.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039270933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0958-1669(00)00079-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041611704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/30.1.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046481430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-0290(2000)71:4<286::aid-bit1018>3.0.co;2-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048771327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-0290(2000)71:4<286::aid-bit1018>3.0.co;2-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048771327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/15362310252780799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059214981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/00221287-143-5-1567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060369467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082595939", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-11", 
        "datePublishedReg": "2002-11-01", 
        "description": "Annotated genome sequences can be used to reconstruct whole-cell metabolic networks. These metabolic networks can be modelled and analysed (computed) to study complex biological functions. In particular, constraints-based in silico models have been used to calculate optimal growth rates on common carbon substrates, and the results were found to be consistent with experimental data under many but not all conditions. Optimal biological functions are acquired through an evolutionary process. Thus, incorrect predictions of in silico models based on optimal performance criteria may be due to incomplete adaptive evolution under the conditions examined. Escherichia coli K-12 MG1655 grows sub-optimally on glycerol as the sole carbon source. Here we show that when placed under growth selection pressure, the growth rate of E. coli on glycerol reproducibly evolved over 40 days, or about 700 generations, from a sub-optimal value to the optimal growth rate predicted from a whole-cell in silico model. These results open the possibility of using adaptive evolution of entire metabolic networks to realize metabolic states that have been determined a priori based on in silico analysis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature01149", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6912", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "420"
          }
        ], 
        "name": "Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth", 
        "pagination": "186", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7b669d6173a556158802df9d5ada13cc52ab47126e4706ddb965009098b7f639"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12432395"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature01149"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025902533"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature01149", 
          "https://app.dimensions.ai/details/publication/pub.1025902533"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71689_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature01149"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01149'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01149'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01149'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01149'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      21 PREDICATES      66 URIs      38 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature01149 schema:about N035cb1041d8b4275bf60304b50537ca1
    2 N07f6258b01c1456b986760223463f075
    3 N0cae566f24484e0f9875aa2420f2fbde
    4 N1983d35eb2d2436283c12f2ac6a0d84f
    5 N22b3c91a2e2e4e9b81d546ad8496bbaf
    6 N3d6caeb451c747ccb0e34d9afb87fe11
    7 N486a7bfa98c949faa7d27ed34f7c5c0c
    8 N49961d50162f4e23813d15ba6946a820
    9 N509f4034a6e446d3bc39410936423f85
    10 N5d0ffd1f5aae4be19d2f73deff7397b3
    11 N61a72ac42f68466eb5baa86dd04bf568
    12 N6463bd47ef114a089e3765006aebe61e
    13 N8e84badb710140788cdce91b6b64ddf5
    14 N9f9743c338064a54a9077fcfd6a6afcb
    15 Nb9b626edacab4877a624c33431de8d8f
    16 Nc9d6733b5f10486abc75597f1362bcf7
    17 Nd01690fc4ac842d98c4752871312f8db
    18 anzsrc-for:06
    19 anzsrc-for:0604
    20 schema:author Nbc3f08cb32714efc87aa97765f1ec063
    21 schema:citation sg:pub.10.1038/73786
    22 sg:pub.10.1038/81125
    23 sg:pub.10.1038/84379
    24 sg:pub.10.1038/nbt1094-994
    25 https://app.dimensions.ai/details/publication/pub.1082595939
    26 https://doi.org/10.1002/1097-0290(2000)71:4<286::aid-bit1018>3.0.co;2-r
    27 https://doi.org/10.1002/bit.10047
    28 https://doi.org/10.1016/s0167-7799(97)01067-6
    29 https://doi.org/10.1016/s0168-1656(01)00418-7
    30 https://doi.org/10.1016/s0378-1119(97)00307-7
    31 https://doi.org/10.1016/s0958-1669(00)00079-3
    32 https://doi.org/10.1016/s0968-0004(00)01754-0
    33 https://doi.org/10.1073/pnas.97.10.5528
    34 https://doi.org/10.1089/15362310252780799
    35 https://doi.org/10.1093/bioinformatics/15.1.72
    36 https://doi.org/10.1093/nar/28.1.123
    37 https://doi.org/10.1093/nar/30.1.56
    38 https://doi.org/10.1099/00221287-143-5-1567
    39 https://doi.org/10.1126/science.277.5331.1453
    40 https://doi.org/10.1128/jb.184.16.4582-4593.2002
    41 schema:datePublished 2002-11
    42 schema:datePublishedReg 2002-11-01
    43 schema:description Annotated genome sequences can be used to reconstruct whole-cell metabolic networks. These metabolic networks can be modelled and analysed (computed) to study complex biological functions. In particular, constraints-based in silico models have been used to calculate optimal growth rates on common carbon substrates, and the results were found to be consistent with experimental data under many but not all conditions. Optimal biological functions are acquired through an evolutionary process. Thus, incorrect predictions of in silico models based on optimal performance criteria may be due to incomplete adaptive evolution under the conditions examined. Escherichia coli K-12 MG1655 grows sub-optimally on glycerol as the sole carbon source. Here we show that when placed under growth selection pressure, the growth rate of E. coli on glycerol reproducibly evolved over 40 days, or about 700 generations, from a sub-optimal value to the optimal growth rate predicted from a whole-cell in silico model. These results open the possibility of using adaptive evolution of entire metabolic networks to realize metabolic states that have been determined a priori based on in silico analysis.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N42d8b37797ba4effbb68ff690b8d999d
    48 Nc23c410ea9524848962808eea3643b4d
    49 sg:journal.1018957
    50 schema:name Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    51 schema:pagination 186
    52 schema:productId N041745b4fdca4dd88e5e97d83985d319
    53 N964825a426424f779c6ce072c5ee9c66
    54 Nc7667475cc4741638e63c82bc60bd222
    55 Ncf4fbd3179764f7c9e9059aaf79c7615
    56 Nf193f3d8e0d34fb5bce6ae0fc6ad7db0
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025902533
    58 https://doi.org/10.1038/nature01149
    59 schema:sdDatePublished 2019-04-11T12:58
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N240dfe767a9642e0bae390ec5f00f12e
    62 schema:url https://www.nature.com/articles/nature01149
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N035cb1041d8b4275bf60304b50537ca1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Kinetics
    68 rdf:type schema:DefinedTerm
    69 N041745b4fdca4dd88e5e97d83985d319 schema:name doi
    70 schema:value 10.1038/nature01149
    71 rdf:type schema:PropertyValue
    72 N07f6258b01c1456b986760223463f075 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Acetic Acid
    74 rdf:type schema:DefinedTerm
    75 N0cae566f24484e0f9875aa2420f2fbde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Genomics
    77 rdf:type schema:DefinedTerm
    78 N1983d35eb2d2436283c12f2ac6a0d84f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Succinic Acid
    80 rdf:type schema:DefinedTerm
    81 N22b3c91a2e2e4e9b81d546ad8496bbaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Computer Simulation
    83 rdf:type schema:DefinedTerm
    84 N240dfe767a9642e0bae390ec5f00f12e schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N3d6caeb451c747ccb0e34d9afb87fe11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Escherichia coli
    88 rdf:type schema:DefinedTerm
    89 N42d8b37797ba4effbb68ff690b8d999d schema:volumeNumber 420
    90 rdf:type schema:PublicationVolume
    91 N486a7bfa98c949faa7d27ed34f7c5c0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Biological Evolution
    93 rdf:type schema:DefinedTerm
    94 N49961d50162f4e23813d15ba6946a820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Adaptation, Physiological
    96 rdf:type schema:DefinedTerm
    97 N509f4034a6e446d3bc39410936423f85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Genome, Bacterial
    99 rdf:type schema:DefinedTerm
    100 N5d0ffd1f5aae4be19d2f73deff7397b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Carbon
    102 rdf:type schema:DefinedTerm
    103 N5fe2922f1d2548648102d365404763c7 rdf:first sg:person.013621313027.86
    104 rdf:rest N7ea082c596ec412fa101a8d1c5c89681
    105 N61a72ac42f68466eb5baa86dd04bf568 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Phenotype
    107 rdf:type schema:DefinedTerm
    108 N6463bd47ef114a089e3765006aebe61e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Glycerol
    110 rdf:type schema:DefinedTerm
    111 N7ea082c596ec412fa101a8d1c5c89681 rdf:first sg:person.011260472057.92
    112 rdf:rest rdf:nil
    113 N8e84badb710140788cdce91b6b64ddf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Computational Biology
    115 rdf:type schema:DefinedTerm
    116 N964825a426424f779c6ce072c5ee9c66 schema:name nlm_unique_id
    117 schema:value 0410462
    118 rdf:type schema:PropertyValue
    119 N9f9743c338064a54a9077fcfd6a6afcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Selection, Genetic
    121 rdf:type schema:DefinedTerm
    122 Nb9b626edacab4877a624c33431de8d8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Glucose
    124 rdf:type schema:DefinedTerm
    125 Nbc3f08cb32714efc87aa97765f1ec063 rdf:first sg:person.01066771374.55
    126 rdf:rest N5fe2922f1d2548648102d365404763c7
    127 Nc23c410ea9524848962808eea3643b4d schema:issueNumber 6912
    128 rdf:type schema:PublicationIssue
    129 Nc7667475cc4741638e63c82bc60bd222 schema:name pubmed_id
    130 schema:value 12432395
    131 rdf:type schema:PropertyValue
    132 Nc9d6733b5f10486abc75597f1362bcf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Models, Biological
    134 rdf:type schema:DefinedTerm
    135 Ncf4fbd3179764f7c9e9059aaf79c7615 schema:name dimensions_id
    136 schema:value pub.1025902533
    137 rdf:type schema:PropertyValue
    138 Nd01690fc4ac842d98c4752871312f8db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Malates
    140 rdf:type schema:DefinedTerm
    141 Nf193f3d8e0d34fb5bce6ae0fc6ad7db0 schema:name readcube_id
    142 schema:value 7b669d6173a556158802df9d5ada13cc52ab47126e4706ddb965009098b7f639
    143 rdf:type schema:PropertyValue
    144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Biological Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Genetics
    149 rdf:type schema:DefinedTerm
    150 sg:journal.1018957 schema:issn 0090-0028
    151 1476-4687
    152 schema:name Nature
    153 rdf:type schema:Periodical
    154 sg:person.01066771374.55 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    155 schema:familyName Ibarra
    156 schema:givenName Rafael U.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066771374.55
    158 rdf:type schema:Person
    159 sg:person.011260472057.92 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    160 schema:familyName Palsson
    161 schema:givenName Bernhard O.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260472057.92
    163 rdf:type schema:Person
    164 sg:person.013621313027.86 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
    165 schema:familyName Edwards
    166 schema:givenName Jeremy S.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621313027.86
    168 rdf:type schema:Person
    169 sg:pub.10.1038/73786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021112891
    170 https://doi.org/10.1038/73786
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/81125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011471610
    173 https://doi.org/10.1038/81125
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/84379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458337
    176 https://doi.org/10.1038/84379
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nbt1094-994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021388132
    179 https://doi.org/10.1038/nbt1094-994
    180 rdf:type schema:CreativeWork
    181 https://app.dimensions.ai/details/publication/pub.1082595939 schema:CreativeWork
    182 https://doi.org/10.1002/1097-0290(2000)71:4<286::aid-bit1018>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1048771327
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/bit.10047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003836798
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/s0167-7799(97)01067-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019774568
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/s0168-1656(01)00418-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026546617
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/s0378-1119(97)00307-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008168362
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/s0958-1669(00)00079-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041611704
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/s0968-0004(00)01754-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798241
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1073/pnas.97.10.5528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005244921
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1089/15362310252780799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059214981
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1093/bioinformatics/15.1.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039270933
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1093/nar/28.1.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007406550
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1093/nar/30.1.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046481430
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1099/00221287-143-5-1567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060369467
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1126/science.277.5331.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003267570
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1128/jb.184.16.4582-4593.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017218170
    211 rdf:type schema:CreativeWork
    212 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
    213 schema:name *Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, USA
    214 rdf:type schema:Organization
    215 https://www.grid.ac/institutes/grid.33489.35 schema:alternateName University of Delaware
    216 schema:name ‡Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...