Ontology type: schema:ScholarlyArticle
2002-09-12
AUTHORSMyles R. Allen, William J. Ingram
ABSTRACTWhat can we say about changes in the hydrologic cycle on 50-year timescales when we cannot predict rainfall next week? Eventually, perhaps, a great deal: the overall climate response to increasing atmospheric concentrations of greenhouse gases may prove much simpler and more predictable than the chaos of short-term weather. Quantifying the diversity of possible responses is essential for any objective, probability-based climate forecast, and this task will require a new generation of climate modelling experiments, systematically exploring the range of model behaviour that is consistent with observations. It will be substantially harder to quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because the observations are less complete and because the physical constraints are weaker. More... »
PAGES228-232
http://scigraph.springernature.com/pub.10.1038/nature01092
DOIhttp://dx.doi.org/10.1038/nature01092
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046916950
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/12226677
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aerosols",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carbon Dioxide",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Climate",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humidity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Theoretical",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Oceans and Seas",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Rain",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Temperature",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Water",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
],
"type": "Organization"
},
"familyName": "Allen",
"givenName": "Myles R.",
"id": "sg:person.0600474550.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The Hadley Centre, Met Office, London Road, RG12 2SZ, Bracknell, UK",
"id": "http://www.grid.ac/institutes/grid.17100.37",
"name": [
"The Hadley Centre, Met Office, London Road, RG12 2SZ, Bracknell, UK"
],
"type": "Organization"
},
"familyName": "Ingram",
"givenName": "William J.",
"id": "sg:person.014131530715.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131530715.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s003820050229",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016085439",
"https://doi.org/10.1007/s003820050229"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1005499220385",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047476127",
"https://doi.org/10.1023/a:1005499220385"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01095152",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010004183",
"https://doi.org/10.1007/bf01095152"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820050144",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009461489",
"https://doi.org/10.1007/s003820050144"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/377217a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048375413",
"https://doi.org/10.1038/377217a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/326483a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051941906",
"https://doi.org/10.1038/326483a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/44266",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034790274",
"https://doi.org/10.1038/44266"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/415863a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040426170",
"https://doi.org/10.1038/415863a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/378145a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048482035",
"https://doi.org/10.1038/378145a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/415514a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038659743",
"https://doi.org/10.1038/415514a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1005488920935",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044362125",
"https://doi.org/10.1023/a:1005488920935"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-8818-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045478970",
"https://doi.org/10.1007/978-94-015-8818-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/416719a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016686487",
"https://doi.org/10.1038/416719a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00198617",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020911415",
"https://doi.org/10.1007/bf00198617"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1005432803188",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024681169",
"https://doi.org/10.1023/a:1005432803188"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/19505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028989532",
"https://doi.org/10.1038/19505"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/415512a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016943344",
"https://doi.org/10.1038/415512a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/382039a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029787674",
"https://doi.org/10.1038/382039a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00210333",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010636493",
"https://doi.org/10.1007/bf00210333"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35036559",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016303772",
"https://doi.org/10.1038/35036559"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0177-9_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013179285",
"https://doi.org/10.1007/978-1-4612-0177-9_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/416723a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022821020",
"https://doi.org/10.1038/416723a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820050224",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042912048",
"https://doi.org/10.1007/s003820050224"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00209609",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004836883",
"https://doi.org/10.1007/bf00209609"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-001-0197-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022984871",
"https://doi.org/10.1007/s00382-001-0197-5"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-09-12",
"datePublishedReg": "2002-09-12",
"description": "What can we say about changes in the hydrologic cycle on 50-year timescales when we cannot predict rainfall next week? Eventually, perhaps, a great deal: the overall climate response to increasing atmospheric concentrations of greenhouse gases may prove much simpler and more predictable than the chaos of short-term weather. Quantifying the diversity of possible responses is essential for any objective, probability-based climate forecast, and this task will require a new generation of climate modelling experiments, systematically exploring the range of model behaviour that is consistent with observations. It will be substantially harder to quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because the observations are less complete and because the physical constraints are weaker.",
"genre": "article",
"id": "sg:pub.10.1038/nature01092",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6903",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "419"
}
],
"keywords": [
"hydrologic cycle",
"global mean temperature",
"short-term weather",
"climate response",
"climate forecasts",
"atmospheric concentrations",
"future changes",
"greenhouse gases",
"climate",
"model behavior",
"possible changes",
"possible responses",
"timescales",
"cycle",
"weather",
"forecasts",
"changes",
"gases",
"physical constraints",
"constraints",
"range",
"temperature",
"concentration",
"response",
"new generation",
"diversity",
"generation",
"great deal",
"experiments",
"next week",
"behavior",
"deal",
"chaos",
"weeks",
"task",
"observations"
],
"name": "Constraints on future changes in climate and the hydrologic cycle",
"pagination": "228-232",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046916950"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nature01092"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"12226677"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nature01092",
"https://app.dimensions.ai/details/publication/pub.1046916950"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_348.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/nature01092"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01092'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01092'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01092'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01092'
This table displays all metadata directly associated to this object as RDF triples.
247 TRIPLES
21 PREDICATES
96 URIs
62 LITERALS
16 BLANK NODES