Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia

ABSTRACT

Optical tweezers1 are commonly used for manipulating microscopic particles, with applications in cell manipulation2, colloid research3,4,5, manipulation of micromachines6 and studies of the properties of light beams7. Such tweezers work by the transfer of momentum from a tightly focused laser to the particle, which refracts and scatters the light and distorts the profile of the beam. The forces produced by this process cause the particle to be trapped near the beam focus. Conventional tweezers use gaussian light beams, which cannot trap particles in multiple locations more than a few micrometres apart in the axial direction, because of beam distortion by the particle and subsequent strong divergence from the focal plane. Bessel beams8,9, however, do not diverge and, furthermore, if part of the beam is obstructed or distorted the beam reconstructs itself after a characteristic propagation distance10. Here we show how this reconstructive property may be utilized within optical tweezers to trap particles in multiple, spatially separated sample cells with a single beam. Owing to the diffractionless nature of the Bessel beam, secondary trapped particles can reside in a second sample cell far removed (∼3 mm) from the first cell. Such tweezers could be used for the simultaneous study of identically prepared ensembles of colloids and biological matter, and potentially offer enhanced control of ‘lab-on-a-chip’ and optically driven microstructures. More... »

PAGES

145-147

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature01007

DOI

http://dx.doi.org/10.1038/nature01007

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018556245

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12226659


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK", 
          "id": "http://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00e9s-Ch\u00e1vez", 
        "givenName": "V.", 
        "id": "sg:person.0766515371.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766515371.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK", 
          "id": "http://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McGloin", 
        "givenName": "D.", 
        "id": "sg:person.01260567107.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260567107.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK", 
          "id": "http://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melville", 
        "givenName": "H.", 
        "id": "sg:person.0652314244.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652314244.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK", 
          "id": "http://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sibbett", 
        "givenName": "W.", 
        "id": "sg:person.01174732777.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174732777.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK", 
          "id": "http://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dholakia", 
        "givenName": "K.", 
        "id": "sg:person.01311161377.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311161377.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/28566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042712376", 
          "https://doi.org/10.1038/28566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385230a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003529405", 
          "https://doi.org/10.1038/385230a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-09", 
    "datePublishedReg": "2002-09-01", 
    "description": "Optical tweezers1 are commonly used for manipulating microscopic particles, with applications in cell manipulation2, colloid research3,4,5, manipulation of micromachines6 and studies of the properties of light beams7. Such tweezers work by the transfer of momentum from a tightly focused laser to the particle, which refracts and scatters the light and distorts the profile of the beam. The forces produced by this process cause the particle to be trapped near the beam focus. Conventional tweezers use gaussian light beams, which cannot trap particles in multiple locations more than a few micrometres apart in the axial direction, because of beam distortion by the particle and subsequent strong divergence from the focal plane. Bessel beams8,9, however, do not diverge and, furthermore, if part of the beam is obstructed or distorted the beam reconstructs itself after a characteristic propagation distance10. Here we show how this reconstructive property may be utilized within optical tweezers to trap particles in multiple, spatially separated sample cells with a single beam. Owing to the diffractionless nature of the Bessel beam, secondary trapped particles can reside in a second sample cell far removed (\u223c3\u2009mm) from the first cell. Such tweezers could be used for the simultaneous study of identically prepared ensembles of colloids and biological matter, and potentially offer enhanced control of \u2018lab-on-a-chip\u2019 and optically driven microstructures.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature01007", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6903", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "419"
      }
    ], 
    "keywords": [
      "light beam", 
      "sample cell", 
      "Gaussian light beam", 
      "optical tweezers", 
      "conventional tweezers", 
      "Bessel beams", 
      "focused laser", 
      "focal plane", 
      "beam focus", 
      "simultaneous micromanipulation", 
      "beam distortion", 
      "single beam", 
      "transfer of momentum", 
      "trap particles", 
      "microscopic particles", 
      "tweezers", 
      "biological matter", 
      "beam", 
      "prepared ensembles", 
      "particles", 
      "laser", 
      "axial direction", 
      "plane", 
      "multiple planes", 
      "momentum", 
      "simultaneous study", 
      "reconstructive properties", 
      "colloids", 
      "Bessel", 
      "properties", 
      "micromanipulation", 
      "enhanced control", 
      "light", 
      "ensemble", 
      "strong divergence", 
      "distortion", 
      "chip", 
      "matter", 
      "transfer", 
      "direction", 
      "manipulation", 
      "force", 
      "microstructure", 
      "applications", 
      "profile", 
      "lab", 
      "nature", 
      "multiple locations", 
      "divergence", 
      "process", 
      "part", 
      "study", 
      "location", 
      "cells", 
      "first cells", 
      "focus", 
      "control"
    ], 
    "name": "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam", 
    "pagination": "145-147", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018556245"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature01007"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12226659"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature01007", 
      "https://app.dimensions.ai/details/publication/pub.1018556245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_345.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature01007"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature01007'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature01007'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature01007'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature01007'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      86 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature01007 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 anzsrc-for:0299
4 schema:author N0072876779f24b84aca11ca168295f4a
5 schema:citation sg:pub.10.1038/28566
6 sg:pub.10.1038/385230a0
7 schema:datePublished 2002-09
8 schema:datePublishedReg 2002-09-01
9 schema:description Optical tweezers1 are commonly used for manipulating microscopic particles, with applications in cell manipulation2, colloid research3,4,5, manipulation of micromachines6 and studies of the properties of light beams7. Such tweezers work by the transfer of momentum from a tightly focused laser to the particle, which refracts and scatters the light and distorts the profile of the beam. The forces produced by this process cause the particle to be trapped near the beam focus. Conventional tweezers use gaussian light beams, which cannot trap particles in multiple locations more than a few micrometres apart in the axial direction, because of beam distortion by the particle and subsequent strong divergence from the focal plane. Bessel beams8,9, however, do not diverge and, furthermore, if part of the beam is obstructed or distorted the beam reconstructs itself after a characteristic propagation distance10. Here we show how this reconstructive property may be utilized within optical tweezers to trap particles in multiple, spatially separated sample cells with a single beam. Owing to the diffractionless nature of the Bessel beam, secondary trapped particles can reside in a second sample cell far removed (∼3 mm) from the first cell. Such tweezers could be used for the simultaneous study of identically prepared ensembles of colloids and biological matter, and potentially offer enhanced control of ‘lab-on-a-chip’ and optically driven microstructures.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N11ec947744b047e09f5efdaad4ccd331
13 N8090d673bdeb49a1b3782415611238d3
14 sg:journal.1018957
15 schema:keywords Bessel
16 Bessel beams
17 Gaussian light beam
18 applications
19 axial direction
20 beam
21 beam distortion
22 beam focus
23 biological matter
24 cells
25 chip
26 colloids
27 control
28 conventional tweezers
29 direction
30 distortion
31 divergence
32 enhanced control
33 ensemble
34 first cells
35 focal plane
36 focus
37 focused laser
38 force
39 lab
40 laser
41 light
42 light beam
43 location
44 manipulation
45 matter
46 micromanipulation
47 microscopic particles
48 microstructure
49 momentum
50 multiple locations
51 multiple planes
52 nature
53 optical tweezers
54 part
55 particles
56 plane
57 prepared ensembles
58 process
59 profile
60 properties
61 reconstructive properties
62 sample cell
63 simultaneous micromanipulation
64 simultaneous study
65 single beam
66 strong divergence
67 study
68 transfer
69 transfer of momentum
70 trap particles
71 tweezers
72 schema:name Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam
73 schema:pagination 145-147
74 schema:productId N0510cdf0753c4ce1976ea5cf2477dc6b
75 N05e3fc036b324cde901411a214bb6943
76 N264eeae3d79145508994d6487ca37cc0
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018556245
78 https://doi.org/10.1038/nature01007
79 schema:sdDatePublished 2022-12-01T06:23
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Ne6d0ad944f144d65919abc27401fb2b8
82 schema:url https://doi.org/10.1038/nature01007
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0072876779f24b84aca11ca168295f4a rdf:first sg:person.0766515371.21
87 rdf:rest Nb530acbe69e04a07a6b85f41703ebc6a
88 N0510cdf0753c4ce1976ea5cf2477dc6b schema:name pubmed_id
89 schema:value 12226659
90 rdf:type schema:PropertyValue
91 N05e3fc036b324cde901411a214bb6943 schema:name doi
92 schema:value 10.1038/nature01007
93 rdf:type schema:PropertyValue
94 N11ec947744b047e09f5efdaad4ccd331 schema:issueNumber 6903
95 rdf:type schema:PublicationIssue
96 N264eeae3d79145508994d6487ca37cc0 schema:name dimensions_id
97 schema:value pub.1018556245
98 rdf:type schema:PropertyValue
99 N8090d673bdeb49a1b3782415611238d3 schema:volumeNumber 419
100 rdf:type schema:PublicationVolume
101 N86b01e15f4644cd49bc241e1ca89e540 rdf:first sg:person.01174732777.23
102 rdf:rest Ncb45ed7c565f40a088a28824dde1f97d
103 Nb530acbe69e04a07a6b85f41703ebc6a rdf:first sg:person.01260567107.53
104 rdf:rest Necbd99303d3e4661865f5c577389da0f
105 Ncb45ed7c565f40a088a28824dde1f97d rdf:first sg:person.01311161377.24
106 rdf:rest rdf:nil
107 Ne6d0ad944f144d65919abc27401fb2b8 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Necbd99303d3e4661865f5c577389da0f rdf:first sg:person.0652314244.00
110 rdf:rest N86b01e15f4644cd49bc241e1ca89e540
111 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
115 schema:name Optical Physics
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
118 schema:name Other Physical Sciences
119 rdf:type schema:DefinedTerm
120 sg:journal.1018957 schema:issn 0028-0836
121 1476-4687
122 schema:name Nature
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01174732777.23 schema:affiliation grid-institutes:grid.11914.3c
126 schema:familyName Sibbett
127 schema:givenName W.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174732777.23
129 rdf:type schema:Person
130 sg:person.01260567107.53 schema:affiliation grid-institutes:grid.11914.3c
131 schema:familyName McGloin
132 schema:givenName D.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260567107.53
134 rdf:type schema:Person
135 sg:person.01311161377.24 schema:affiliation grid-institutes:grid.11914.3c
136 schema:familyName Dholakia
137 schema:givenName K.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311161377.24
139 rdf:type schema:Person
140 sg:person.0652314244.00 schema:affiliation grid-institutes:grid.11914.3c
141 schema:familyName Melville
142 schema:givenName H.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652314244.00
144 rdf:type schema:Person
145 sg:person.0766515371.21 schema:affiliation grid-institutes:grid.11914.3c
146 schema:familyName Garcés-Chávez
147 schema:givenName V.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766515371.21
149 rdf:type schema:Person
150 sg:pub.10.1038/28566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042712376
151 https://doi.org/10.1038/28566
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/385230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003529405
154 https://doi.org/10.1038/385230a0
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.11914.3c schema:alternateName School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK
157 schema:name School of Physics and Astronomy, University of St Andrews, KY16 9SS, North Haugh, St Andrews, Fife, UK
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...