Kondo resonance in a single-molecule transistor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-06

AUTHORS

Wenjie Liang, Matthew P. Shores, Marc Bockrath, Jeffrey R. Long, Hongkun Park

ABSTRACT

When an individual molecule, nanocrystal, nanotube or lithographically defined quantum dot is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena, including the Kondo resonance. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV. More... »

PAGES

725

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature00790

DOI

http://dx.doi.org/10.1038/nature00790

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005786324

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12066180


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "*Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Wenjie", 
        "id": "sg:person.01103632307.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103632307.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California System", 
          "id": "https://www.grid.ac/institutes/grid.30389.31", 
          "name": [
            "\u2020Department of Chemistry, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shores", 
        "givenName": "Matthew P.", 
        "id": "sg:person.01133707755.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133707755.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "*Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bockrath", 
        "givenName": "Marc", 
        "id": "sg:person.01220060707.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220060707.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California System", 
          "id": "https://www.grid.ac/institutes/grid.30389.31", 
          "name": [
            "\u2020Department of Chemistry, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Jeffrey R.", 
        "id": "sg:person.0754611415.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754611415.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "*Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Hongkun", 
        "id": "sg:person.01301622535.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301622535.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-2166-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001641044", 
          "https://doi.org/10.1007/978-1-4757-2166-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2166-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001641044", 
          "https://doi.org/10.1007/978-1-4757-2166-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005848175", 
          "https://doi.org/10.1038/39535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005848175", 
          "https://doi.org/10.1038/39535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386474a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007355361", 
          "https://doi.org/10.1038/386474a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35079517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457445", 
          "https://doi.org/10.1038/35079517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019126092", 
          "https://doi.org/10.1038/22979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019126092", 
          "https://doi.org/10.1038/22979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.11040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040941853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.11040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040941853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90116-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040952604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90116-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040952604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045748931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045748931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35024031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410333", 
          "https://doi.org/10.1038/35024031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35024031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410333", 
          "https://doi.org/10.1038/35024031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052387015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052387015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja011645h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055776815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja011645h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055776815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja025512n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055830517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja025512n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055830517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.1864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.1864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.13137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.13137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.1768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.1768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5308.1922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5344.1788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5376.540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5487.2105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062570999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511470752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098669468"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-06", 
    "datePublishedReg": "2002-06-01", 
    "description": "When an individual molecule, nanocrystal, nanotube or lithographically defined quantum dot is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena, including the Kondo resonance. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature00790", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6890", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "417"
      }
    ], 
    "name": "Kondo resonance in a single-molecule transistor", 
    "pagination": "725", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b912fcbd37c6a9856f18ce32cd519f2ffd8e647b3ff6aa9656a9e9281da5969"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12066180"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature00790"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005786324"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature00790", 
      "https://app.dimensions.ai/details/publication/pub.1005786324"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature00790"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature00790'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature00790'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature00790'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature00790'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature00790 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb67cf791ecee40908adfe5369d726502
4 schema:citation sg:pub.10.1007/978-1-4757-2166-9
5 sg:pub.10.1038/22979
6 sg:pub.10.1038/34373
7 sg:pub.10.1038/35024031
8 sg:pub.10.1038/35042545
9 sg:pub.10.1038/35079517
10 sg:pub.10.1038/386474a0
11 sg:pub.10.1038/39535
12 https://doi.org/10.1016/0370-1573(89)90116-6
13 https://doi.org/10.1017/cbo9780511470752
14 https://doi.org/10.1021/ja011645h
15 https://doi.org/10.1021/ja025512n
16 https://doi.org/10.1063/1.124354
17 https://doi.org/10.1103/physrevb.37.1864
18 https://doi.org/10.1103/physrevb.47.13137
19 https://doi.org/10.1103/physrevb.49.11040
20 https://doi.org/10.1103/physrevlett.40.416
21 https://doi.org/10.1103/physrevlett.61.1768
22 https://doi.org/10.1103/physrevlett.70.2601
23 https://doi.org/10.1103/physrevlett.81.5225
24 https://doi.org/10.1103/physrevlett.81.681
25 https://doi.org/10.1103/physrevlett.84.5824
26 https://doi.org/10.1103/physrevlett.86.878
27 https://doi.org/10.1103/physrevlett.88.126801
28 https://doi.org/10.1126/science.1065824
29 https://doi.org/10.1126/science.275.5308.1922
30 https://doi.org/10.1126/science.278.5344.1788
31 https://doi.org/10.1126/science.281.5376.540
32 https://doi.org/10.1126/science.289.5487.2105
33 schema:datePublished 2002-06
34 schema:datePublishedReg 2002-06-01
35 schema:description When an individual molecule, nanocrystal, nanotube or lithographically defined quantum dot is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena, including the Kondo resonance. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N4565ac392d184e0c9a00e8eb7c018a69
40 N465a2773967746e4bc227513509fcc1d
41 sg:journal.1018957
42 schema:name Kondo resonance in a single-molecule transistor
43 schema:pagination 725
44 schema:productId N2e63373cce1d40be9c0794cd52d1cb81
45 N5fe7b691ccc440a181faa376d1fab9f4
46 N850b70d823da4bae8ca97cefda30b93c
47 N927bde4111304cf8ada343fb2b319c84
48 Nd67f801b81d04f5383438f58a2f80900
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005786324
50 https://doi.org/10.1038/nature00790
51 schema:sdDatePublished 2019-04-11T12:27
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N240f9b1e409a41c39fb92372ac7d30b1
54 schema:url https://www.nature.com/articles/nature00790
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N240f9b1e409a41c39fb92372ac7d30b1 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N2e63373cce1d40be9c0794cd52d1cb81 schema:name pubmed_id
61 schema:value 12066180
62 rdf:type schema:PropertyValue
63 N4565ac392d184e0c9a00e8eb7c018a69 schema:issueNumber 6890
64 rdf:type schema:PublicationIssue
65 N465a2773967746e4bc227513509fcc1d schema:volumeNumber 417
66 rdf:type schema:PublicationVolume
67 N5a1fa17cf7a9475d87c4abd467b70d20 rdf:first sg:person.01133707755.22
68 rdf:rest Nb3da67a229f741719a7327bea58b6a5e
69 N5fe7b691ccc440a181faa376d1fab9f4 schema:name nlm_unique_id
70 schema:value 0410462
71 rdf:type schema:PropertyValue
72 N850b70d823da4bae8ca97cefda30b93c schema:name dimensions_id
73 schema:value pub.1005786324
74 rdf:type schema:PropertyValue
75 N927bde4111304cf8ada343fb2b319c84 schema:name doi
76 schema:value 10.1038/nature00790
77 rdf:type schema:PropertyValue
78 N987746b204504c5a97bdf029eb420fd7 rdf:first sg:person.01301622535.41
79 rdf:rest rdf:nil
80 Nb3da67a229f741719a7327bea58b6a5e rdf:first sg:person.01220060707.78
81 rdf:rest Nffd78f331b39490cb287b02b2e60b044
82 Nb67cf791ecee40908adfe5369d726502 rdf:first sg:person.01103632307.02
83 rdf:rest N5a1fa17cf7a9475d87c4abd467b70d20
84 Nd67f801b81d04f5383438f58a2f80900 schema:name readcube_id
85 schema:value 1b912fcbd37c6a9856f18ce32cd519f2ffd8e647b3ff6aa9656a9e9281da5969
86 rdf:type schema:PropertyValue
87 Nffd78f331b39490cb287b02b2e60b044 rdf:first sg:person.0754611415.55
88 rdf:rest N987746b204504c5a97bdf029eb420fd7
89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Chemistry (incl. Structural)
94 rdf:type schema:DefinedTerm
95 sg:journal.1018957 schema:issn 0090-0028
96 1476-4687
97 schema:name Nature
98 rdf:type schema:Periodical
99 sg:person.01103632307.02 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
100 schema:familyName Liang
101 schema:givenName Wenjie
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103632307.02
103 rdf:type schema:Person
104 sg:person.01133707755.22 schema:affiliation https://www.grid.ac/institutes/grid.30389.31
105 schema:familyName Shores
106 schema:givenName Matthew P.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133707755.22
108 rdf:type schema:Person
109 sg:person.01220060707.78 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
110 schema:familyName Bockrath
111 schema:givenName Marc
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220060707.78
113 rdf:type schema:Person
114 sg:person.01301622535.41 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
115 schema:familyName Park
116 schema:givenName Hongkun
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301622535.41
118 rdf:type schema:Person
119 sg:person.0754611415.55 schema:affiliation https://www.grid.ac/institutes/grid.30389.31
120 schema:familyName Long
121 schema:givenName Jeffrey R.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754611415.55
123 rdf:type schema:Person
124 sg:pub.10.1007/978-1-4757-2166-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001641044
125 https://doi.org/10.1007/978-1-4757-2166-9
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/22979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019126092
128 https://doi.org/10.1038/22979
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
131 https://doi.org/10.1038/34373
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/35024031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046410333
134 https://doi.org/10.1038/35024031
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/35042545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037426978
137 https://doi.org/10.1038/35042545
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/35079517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012457445
140 https://doi.org/10.1038/35079517
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/386474a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007355361
143 https://doi.org/10.1038/386474a0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/39535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005848175
146 https://doi.org/10.1038/39535
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0370-1573(89)90116-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040952604
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1017/cbo9780511470752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098669468
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ja011645h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055776815
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/ja025512n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055830517
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.124354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688491
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.37.1864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545106
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.47.13137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565159
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.49.11040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040941853
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.40.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782680
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.61.1768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797714
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.70.2601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045748931
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.81.5225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464429
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.81.681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052387015
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.84.5824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821496
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.86.878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036564456
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.88.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824645
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1065824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445544
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.275.5308.1922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556185
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.278.5344.1788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558901
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.281.5376.540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561888
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.289.5487.2105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570999
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.30389.31 schema:alternateName University of California System
191 schema:name †Department of Chemistry, University of California, Berkeley, California 94720, USA
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
194 schema:name *Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...