Exploring heavy fermions from macroscopic to microscopic length scales View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08-09

AUTHORS

Steffen Wirth, Frank Steglich

ABSTRACT

Strongly correlated systems present fundamental challenges, especially in materials in which electronic correlations cause a strong increase of the effective mass of the charge carriers. Heavy fermion metals — intermetallic compounds of rare earth metals (such as Ce, Sm and Yb) and actinides (such as U, Np and Pu) — are prototype systems for complex and collective quantum states; they exhibit both a lattice Kondo effect and antiferromagnetic correlations. These materials show unexpected phenomena; for example, they display unconventional superconductivity (beyond Bardeen–Cooper–Schrieffer (BCS) theory) and unconventional quantum criticality (beyond the Landau framework). In this Review, we focus on systems in which Landau's Fermi-liquid theory does not apply. Heavy fermion metals and semiconductors are well suited for the study of strong electronic correlations, because the relevant energy scales (for charge carriers, magnetic excitations and lattice dynamics) are well separated from each other, allowing the exploration of concomitant physical phenomena almost independently. Thus, the study of these materials also provides valuable insight for the understanding — and tailoring — of other correlated systems. More... »

PAGES

16051

References to SciGraph publications

  • 2012-01-10. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6 in NATURE MATERIALS
  • 2013-07-14. Imaging Cooper pairing of heavy fermions in CeCoIn5 in NATURE PHYSICS
  • 1998-01. Kondo effect in a single-electron transistor in NATURE
  • 1974-04. Giant thermoelectric power of (La, Ce)Al2 in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 2010-12-12. Magnetically driven superconductivity in CeCu2Si2 in NATURE PHYSICS
  • 2011-06-15. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2 in NATURE
  • 2013-07-14. Visualizing nodal heavy fermion superconductivity in CeCoIn5 in NATURE PHYSICS
  • 2013-07-01. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime in NATURE COMMUNICATIONS
  • 2008-03. What lies beneath the dome? in NATURE PHYSICS
  • 2002-01. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ in NATURE
  • 2012-04-25. Thermal and electrical transport across a magnetic quantum critical point in NATURE
  • 1974-10. A “fermi-liquid” description of the Kondo problem at low temperatures in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 2009-09-06. Antiferromagnetic criticality at a heavy-fermion quantum phase transition in NATURE PHYSICS
  • 2009-05-31. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2 in NATURE PHYSICS
  • 2002-06. Kondo resonance in a single-molecule transistor in NATURE
  • 1978-12. Specific heat of concentrated kondo systems: (La, Ce)Al2 and CeAl2 in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 2003-07. The break-up of heavy electrons at a quantum critical point in NATURE
  • 2014-11-19. Superconductivity in the vicinity of antiferromagnetic order in CrAs in NATURE COMMUNICATIONS
  • 2006-03. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 in NATURE
  • 2001-10. Locally critical quantum phase transitions in strongly correlated metals in NATURE
  • 2000-09. Onset of antiferromagnetism in heavy-fermion metals in NATURE
  • 2008-07. Scaling the Kondo lattice in NATURE
  • 2008-03-03. Quantum criticality in heavy-fermion metals in NATURE PHYSICS
  • 2013-12-18. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6 in NATURE COMMUNICATIONS
  • 2009-12-09. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order in NATURE
  • 2008-06-29. Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4 in NATURE PHYSICS
  • 2015-02-11. From quantum matter to high-temperature superconductivity in copper oxides in NATURE
  • 2014-03-21. Quantum criticality in a metallic spin liquid in NATURE MATERIALS
  • 2010-06. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2 in NATURE
  • 2016-03-11. High-temperature superconductivity in iron pnictides and chalcogenides in NATURE REVIEWS MATERIALS
  • 1998-07-01. Magnetically mediated superconductivity in heavy fermion compounds in NATURE
  • 2008. Mott Transition and Superconductivity in Q2D Organic Conductors in THE PHYSICS OF ORGANIC SUPERCONDUCTORS AND CONDUCTORS
  • 2012-06-13. Visualizing heavy fermions emerging in a quantum critical Kondo lattice in NATURE
  • 2004-12. Hall-effect evolution across a heavy-fermion quantum critical point in NATURE
  • 2014-07-30. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator in NATURE COMMUNICATIONS
  • 2005-01-19. Quantum criticality in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/natrevmats.2016.51

    DOI

    http://dx.doi.org/10.1038/natrevmats.2016.51

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024323677


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wirth", 
            "givenName": "Steffen", 
            "id": "sg:person.0711773300.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711773300.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458438.6", 
              "name": [
                "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany", 
                "Center for Correlated Matter, Zhejiang University, 310058, Hangzhou, Zhejiang, China", 
                "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steglich", 
            "givenName": "Frank", 
            "id": "sg:person.01061214726.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature03129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005740509", 
              "https://doi.org/10.1038/nature03129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048617608", 
              "https://doi.org/10.1038/nphys1299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048572357", 
              "https://doi.org/10.1038/nmat3214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/34373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002698314", 
              "https://doi.org/10.1038/34373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76672-8_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008676149", 
              "https://doi.org/10.1007/978-3-540-76672-8_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029319849", 
              "https://doi.org/10.1038/nature03279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043296466", 
              "https://doi.org/10.1038/nphys892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014344396", 
              "https://doi.org/10.1038/nphys2672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019478122", 
              "https://doi.org/10.1038/natrevmats.2016.17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027850664", 
              "https://doi.org/10.1038/ncomms3110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003432741", 
              "https://doi.org/10.1038/nature09073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022690485", 
              "https://doi.org/10.1038/nature14165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415412a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032896293", 
              "https://doi.org/10.1038/415412a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00655628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035333605", 
              "https://doi.org/10.1007/bf00655628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050396810", 
              "https://doi.org/10.1038/nature04571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027454082", 
              "https://doi.org/10.1038/nature01774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006495339", 
              "https://doi.org/10.1038/nphys1852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032044550", 
              "https://doi.org/10.1038/nphys2671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35030039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028000164", 
              "https://doi.org/10.1038/35030039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036616791", 
              "https://doi.org/10.1038/nature10148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00654541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050506524", 
              "https://doi.org/10.1007/bf00654541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017479780", 
              "https://doi.org/10.1038/nphys1002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35101507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025237678", 
              "https://doi.org/10.1038/35101507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01324030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048828847", 
              "https://doi.org/10.1007/bf01324030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021609429", 
              "https://doi.org/10.1038/ncomms6508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011536224", 
              "https://doi.org/10.1038/nmat3900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003098741", 
              "https://doi.org/10.1038/nature07157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029332611", 
              "https://doi.org/10.1038/nature11204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006946016", 
              "https://doi.org/10.1038/nature08680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005786324", 
              "https://doi.org/10.1038/nature00790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005434176", 
              "https://doi.org/10.1038/nphys1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033503833", 
              "https://doi.org/10.1038/ncomms3991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010104937", 
              "https://doi.org/10.1038/nature11072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043025603", 
              "https://doi.org/10.1038/ncomms5566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039057349", 
              "https://doi.org/10.1038/nphys909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/27838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020745542", 
              "https://doi.org/10.1038/27838"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08-09", 
        "datePublishedReg": "2016-08-09", 
        "description": "Strongly correlated systems present fundamental challenges, especially in materials in which electronic correlations cause a strong increase of the effective mass of the charge carriers. Heavy fermion metals \u2014 intermetallic compounds of rare earth metals (such as Ce, Sm and Yb) and actinides (such as U, Np and Pu) \u2014 are prototype systems for complex and collective quantum states; they exhibit both a lattice Kondo effect and antiferromagnetic correlations. These materials show unexpected phenomena; for example, they display unconventional superconductivity (beyond Bardeen\u2013Cooper\u2013Schrieffer (BCS) theory) and unconventional quantum criticality (beyond the Landau framework). In this Review, we focus on systems in which Landau's Fermi-liquid theory does not apply. Heavy fermion metals and semiconductors are well suited for the study of strong electronic correlations, because the relevant energy scales (for charge carriers, magnetic excitations and lattice dynamics) are well separated from each other, allowing the exploration of concomitant physical phenomena almost independently. Thus, the study of these materials also provides valuable insight for the understanding \u2014 and tailoring \u2014 of other correlated systems.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/natrevmats.2016.51", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1284373", 
            "issn": [
              "2058-8437"
            ], 
            "name": "Nature Reviews Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "Fermi liquid theory", 
          "electronic correlations", 
          "correlated systems", 
          "Landau Fermi-liquid theory", 
          "unconventional quantum criticality", 
          "collective quantum states", 
          "heavy-fermion metals", 
          "strong electronic correlations", 
          "relevant energy scales", 
          "quantum criticality", 
          "quantum states", 
          "unconventional superconductivity", 
          "heavy fermions", 
          "energy scale", 
          "antiferromagnetic correlations", 
          "microscopic length scale", 
          "effective mass", 
          "Kondo effect", 
          "charge carriers", 
          "physical phenomena", 
          "unexpected phenomenon", 
          "length scales", 
          "rare earth metals", 
          "fermions", 
          "superconductivity", 
          "semiconductors", 
          "strong increase", 
          "actinides", 
          "phenomenon", 
          "metals", 
          "materials", 
          "earth metals", 
          "tailoring", 
          "criticality", 
          "mass", 
          "macroscopic", 
          "state", 
          "carriers", 
          "fundamental challenge", 
          "theory", 
          "system", 
          "prototype system", 
          "scale", 
          "correlation", 
          "effect", 
          "valuable insights", 
          "example", 
          "compounds", 
          "increase", 
          "insights", 
          "understanding", 
          "study", 
          "exploration", 
          "challenges", 
          "review"
        ], 
        "name": "Exploring heavy fermions from macroscopic to microscopic length scales", 
        "pagination": "16051", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024323677"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/natrevmats.2016.51"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/natrevmats.2016.51", 
          "https://app.dimensions.ai/details/publication/pub.1024323677"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_707.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/natrevmats.2016.51"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/natrevmats.2016.51'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/natrevmats.2016.51'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/natrevmats.2016.51'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/natrevmats.2016.51'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      21 PREDICATES      115 URIs      71 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/natrevmats.2016.51 schema:about anzsrc-for:02
    2 anzsrc-for:0204
    3 schema:author N5d258365fa9d4598878db558241fa4f1
    4 schema:citation sg:pub.10.1007/978-3-540-76672-8_22
    5 sg:pub.10.1007/bf00654541
    6 sg:pub.10.1007/bf00655628
    7 sg:pub.10.1007/bf01324030
    8 sg:pub.10.1038/27838
    9 sg:pub.10.1038/34373
    10 sg:pub.10.1038/35030039
    11 sg:pub.10.1038/35101507
    12 sg:pub.10.1038/415412a
    13 sg:pub.10.1038/natrevmats.2016.17
    14 sg:pub.10.1038/nature00790
    15 sg:pub.10.1038/nature01774
    16 sg:pub.10.1038/nature03129
    17 sg:pub.10.1038/nature03279
    18 sg:pub.10.1038/nature04571
    19 sg:pub.10.1038/nature07157
    20 sg:pub.10.1038/nature08680
    21 sg:pub.10.1038/nature09073
    22 sg:pub.10.1038/nature10148
    23 sg:pub.10.1038/nature11072
    24 sg:pub.10.1038/nature11204
    25 sg:pub.10.1038/nature14165
    26 sg:pub.10.1038/ncomms3110
    27 sg:pub.10.1038/ncomms3991
    28 sg:pub.10.1038/ncomms5566
    29 sg:pub.10.1038/ncomms6508
    30 sg:pub.10.1038/nmat3214
    31 sg:pub.10.1038/nmat3900
    32 sg:pub.10.1038/nphys1002
    33 sg:pub.10.1038/nphys1299
    34 sg:pub.10.1038/nphys1374
    35 sg:pub.10.1038/nphys1852
    36 sg:pub.10.1038/nphys2671
    37 sg:pub.10.1038/nphys2672
    38 sg:pub.10.1038/nphys892
    39 sg:pub.10.1038/nphys909
    40 schema:datePublished 2016-08-09
    41 schema:datePublishedReg 2016-08-09
    42 schema:description Strongly correlated systems present fundamental challenges, especially in materials in which electronic correlations cause a strong increase of the effective mass of the charge carriers. Heavy fermion metals — intermetallic compounds of rare earth metals (such as Ce, Sm and Yb) and actinides (such as U, Np and Pu) — are prototype systems for complex and collective quantum states; they exhibit both a lattice Kondo effect and antiferromagnetic correlations. These materials show unexpected phenomena; for example, they display unconventional superconductivity (beyond Bardeen–Cooper–Schrieffer (BCS) theory) and unconventional quantum criticality (beyond the Landau framework). In this Review, we focus on systems in which Landau's Fermi-liquid theory does not apply. Heavy fermion metals and semiconductors are well suited for the study of strong electronic correlations, because the relevant energy scales (for charge carriers, magnetic excitations and lattice dynamics) are well separated from each other, allowing the exploration of concomitant physical phenomena almost independently. Thus, the study of these materials also provides valuable insight for the understanding — and tailoring — of other correlated systems.
    43 schema:genre article
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N18ac292ef8714d07a629c82c403cf5a6
    46 N3867516c7d2a47b9affc7cf29c46a43f
    47 sg:journal.1284373
    48 schema:keywords Fermi liquid theory
    49 Kondo effect
    50 Landau Fermi-liquid theory
    51 actinides
    52 antiferromagnetic correlations
    53 carriers
    54 challenges
    55 charge carriers
    56 collective quantum states
    57 compounds
    58 correlated systems
    59 correlation
    60 criticality
    61 earth metals
    62 effect
    63 effective mass
    64 electronic correlations
    65 energy scale
    66 example
    67 exploration
    68 fermions
    69 fundamental challenge
    70 heavy fermions
    71 heavy-fermion metals
    72 increase
    73 insights
    74 length scales
    75 macroscopic
    76 mass
    77 materials
    78 metals
    79 microscopic length scale
    80 phenomenon
    81 physical phenomena
    82 prototype system
    83 quantum criticality
    84 quantum states
    85 rare earth metals
    86 relevant energy scales
    87 review
    88 scale
    89 semiconductors
    90 state
    91 strong electronic correlations
    92 strong increase
    93 study
    94 superconductivity
    95 system
    96 tailoring
    97 theory
    98 unconventional quantum criticality
    99 unconventional superconductivity
    100 understanding
    101 unexpected phenomenon
    102 valuable insights
    103 schema:name Exploring heavy fermions from macroscopic to microscopic length scales
    104 schema:pagination 16051
    105 schema:productId N2834bda844304e4f9097711989a81458
    106 Nc945ba8441764e12850039bbe634d87f
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024323677
    108 https://doi.org/10.1038/natrevmats.2016.51
    109 schema:sdDatePublished 2022-10-01T06:42
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N33665f351f6b49ba98725a7fcc372c52
    112 schema:url https://doi.org/10.1038/natrevmats.2016.51
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N18ac292ef8714d07a629c82c403cf5a6 schema:issueNumber 10
    117 rdf:type schema:PublicationIssue
    118 N2834bda844304e4f9097711989a81458 schema:name dimensions_id
    119 schema:value pub.1024323677
    120 rdf:type schema:PropertyValue
    121 N33665f351f6b49ba98725a7fcc372c52 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N3867516c7d2a47b9affc7cf29c46a43f schema:volumeNumber 1
    124 rdf:type schema:PublicationVolume
    125 N5d258365fa9d4598878db558241fa4f1 rdf:first sg:person.0711773300.46
    126 rdf:rest Nebec02f47a72414fb359ccab57f6f09a
    127 Nc945ba8441764e12850039bbe634d87f schema:name doi
    128 schema:value 10.1038/natrevmats.2016.51
    129 rdf:type schema:PropertyValue
    130 Nebec02f47a72414fb359ccab57f6f09a rdf:first sg:person.01061214726.76
    131 rdf:rest rdf:nil
    132 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Physical Sciences
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Condensed Matter Physics
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1284373 schema:issn 2058-8437
    139 schema:name Nature Reviews Materials
    140 schema:publisher Springer Nature
    141 rdf:type schema:Periodical
    142 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.458438.6
    143 schema:familyName Steglich
    144 schema:givenName Frank
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
    146 rdf:type schema:Person
    147 sg:person.0711773300.46 schema:affiliation grid-institutes:grid.419507.e
    148 schema:familyName Wirth
    149 schema:givenName Steffen
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711773300.46
    151 rdf:type schema:Person
    152 sg:pub.10.1007/978-3-540-76672-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008676149
    153 https://doi.org/10.1007/978-3-540-76672-8_22
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bf00654541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050506524
    156 https://doi.org/10.1007/bf00654541
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bf00655628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035333605
    159 https://doi.org/10.1007/bf00655628
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/bf01324030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048828847
    162 https://doi.org/10.1007/bf01324030
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/27838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020745542
    165 https://doi.org/10.1038/27838
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
    168 https://doi.org/10.1038/34373
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/35030039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028000164
    171 https://doi.org/10.1038/35030039
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/35101507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237678
    174 https://doi.org/10.1038/35101507
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/415412a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032896293
    177 https://doi.org/10.1038/415412a
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/natrevmats.2016.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019478122
    180 https://doi.org/10.1038/natrevmats.2016.17
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nature00790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005786324
    183 https://doi.org/10.1038/nature00790
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature01774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027454082
    186 https://doi.org/10.1038/nature01774
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature03129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005740509
    189 https://doi.org/10.1038/nature03129
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature03279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029319849
    192 https://doi.org/10.1038/nature03279
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature04571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050396810
    195 https://doi.org/10.1038/nature04571
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature07157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003098741
    198 https://doi.org/10.1038/nature07157
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature08680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006946016
    201 https://doi.org/10.1038/nature08680
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature09073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003432741
    204 https://doi.org/10.1038/nature09073
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature10148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036616791
    207 https://doi.org/10.1038/nature10148
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature11072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010104937
    210 https://doi.org/10.1038/nature11072
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature11204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029332611
    213 https://doi.org/10.1038/nature11204
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nature14165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690485
    216 https://doi.org/10.1038/nature14165
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/ncomms3110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027850664
    219 https://doi.org/10.1038/ncomms3110
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/ncomms3991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033503833
    222 https://doi.org/10.1038/ncomms3991
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/ncomms5566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043025603
    225 https://doi.org/10.1038/ncomms5566
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/ncomms6508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021609429
    228 https://doi.org/10.1038/ncomms6508
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nmat3214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048572357
    231 https://doi.org/10.1038/nmat3214
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nmat3900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011536224
    234 https://doi.org/10.1038/nmat3900
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nphys1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017479780
    237 https://doi.org/10.1038/nphys1002
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nphys1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048617608
    240 https://doi.org/10.1038/nphys1299
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nphys1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005434176
    243 https://doi.org/10.1038/nphys1374
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nphys1852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006495339
    246 https://doi.org/10.1038/nphys1852
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nphys2671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032044550
    249 https://doi.org/10.1038/nphys2671
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nphys2672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014344396
    252 https://doi.org/10.1038/nphys2672
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nphys892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043296466
    255 https://doi.org/10.1038/nphys892
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nphys909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039057349
    258 https://doi.org/10.1038/nphys909
    259 rdf:type schema:CreativeWork
    260 grid-institutes:grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
    261 schema:name Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
    262 rdf:type schema:Organization
    263 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
    264 schema:name Center for Correlated Matter, Zhejiang University, 310058, Hangzhou, Zhejiang, China
    265 Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
    266 Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...