Machine learning and data mining: strategies for hypothesis generation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

M A Oquendo, E Baca-Garcia, A Artés-Rodríguez, F Perez-Cruz, H C Galfalvy, H Blasco-Fontecilla, D Madigan, N Duan

ABSTRACT

Strategies for generating knowledge in medicine have included observation of associations in clinical or research settings and more recently, development of pathophysiological models based on molecular biology. Although critically important, they limit hypothesis generation to an incremental pace. Machine learning and data mining are alternative approaches to identifying new vistas to pursue, as is already evident in the literature. In concert with these analytic strategies, novel approaches to data collection can enhance the hypothesis pipeline as well. In data farming, data are obtained in an 'organic' way, in the sense that it is entered by patients themselves and available for harvesting. In contrast, in evidence farming (EF), it is the provider who enters medical data about individual patients. EF differs from regular electronic medical record systems because frontline providers can use it to learn from their own past experience. In addition to the possibility of generating large databases with farming approaches, it is likely that we can further harness the power of large data sets collected using either farming or more standard techniques through implementation of data-mining and machine-learning strategies. Exploiting large databases to develop new hypotheses regarding neurobiological and genetic underpinnings of psychiatric illness is useful in itself, but also affords the opportunity to identify novel mechanisms to be targeted in drug discovery and development. More... »

PAGES

956

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/mp.2011.173

DOI

http://dx.doi.org/10.1038/mp.2011.173

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032143563

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22230882


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mental Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Psychiatry, New York State Psychiatric Institute and Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oquendo", 
        "givenName": "M A", 
        "id": "sg:person.01274460054.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274460054.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Psychiatry, New York State Psychiatric Institute and Columbia University, New York, NY, USA", 
            "Fundacion Jimenez Diaz and Universidad Autonoma, CIBERSAM, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baca-Garcia", 
        "givenName": "E", 
        "id": "sg:person.01173175243.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173175243.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Art\u00e9s-Rodr\u00edguez", 
        "givenName": "A", 
        "id": "sg:person.016405316123.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405316123.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Madrid, Spain", 
            "Princeton University, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perez-Cruz", 
        "givenName": "F", 
        "id": "sg:person.016363577525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363577525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Psychiatry, New York State Psychiatric Institute and Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galfalvy", 
        "givenName": "H C", 
        "id": "sg:person.01035014675.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035014675.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Fundacion Jimenez Diaz and Universidad Autonoma, CIBERSAM, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blasco-Fontecilla", 
        "givenName": "H", 
        "id": "sg:person.01044003054.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044003054.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Statistics, Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madigan", 
        "givenName": "D", 
        "id": "sg:person.01064242244.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064242244.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Psychiatry, New York State Psychiatric Institute and Columbia University, New York, NY, USA", 
            "Department of Biostatistics, Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "N", 
        "id": "sg:person.0756406326.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756406326.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005349439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0447.2006.00984.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014648892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.b.30975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018200504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.b.30975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018200504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2753.2008.01009.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019271792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsych.2009.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025445147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200932060-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031905666", 
          "https://doi.org/10.2165/00002018-200932060-00007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200932060-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031905666", 
          "https://doi.org/10.2165/00002018-200932060-00007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17865-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032644747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053583368", 
          "https://doi.org/10.1038/nm1653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1066969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/096228000701555172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/096228000701555181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4088/jcp.v67n0716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072209546"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "Strategies for generating knowledge in medicine have included observation of associations in clinical or research settings and more recently, development of pathophysiological models based on molecular biology. Although critically important, they limit hypothesis generation to an incremental pace. Machine learning and data mining are alternative approaches to identifying new vistas to pursue, as is already evident in the literature. In concert with these analytic strategies, novel approaches to data collection can enhance the hypothesis pipeline as well. In data farming, data are obtained in an 'organic' way, in the sense that it is entered by patients themselves and available for harvesting. In contrast, in evidence farming (EF), it is the provider who enters medical data about individual patients. EF differs from regular electronic medical record systems because frontline providers can use it to learn from their own past experience. In addition to the possibility of generating large databases with farming approaches, it is likely that we can further harness the power of large data sets collected using either farming or more standard techniques through implementation of data-mining and machine-learning strategies. Exploiting large databases to develop new hypotheses regarding neurobiological and genetic underpinnings of psychiatric illness is useful in itself, but also affords the opportunity to identify novel mechanisms to be targeted in drug discovery and development.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/mp.2011.173", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1115540", 
        "issn": [
          "1359-4184", 
          "1476-5578"
        ], 
        "name": "Molecular Psychiatry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Machine learning and data mining: strategies for hypothesis generation", 
    "pagination": "956", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99203d7fc21f2bc0841f22f58d06cb34035f2a152fc46d336a78db8279ac4f97"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22230882"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9607835"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/mp.2011.173"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032143563"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/mp.2011.173", 
      "https://app.dimensions.ai/details/publication/pub.1032143563"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/mp2011173"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/mp.2011.173'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/mp.2011.173'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/mp.2011.173'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/mp.2011.173'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      46 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/mp.2011.173 schema:about N1d7a6ec3489348119b7a3101d3e85a2b
2 N3185fea3899a40b7ad412c8cb30737c8
3 N718f5903be0e461988ac3082099da9ac
4 N82890e81b8df49498523c1d2d3e16cd6
5 Nbc6ff964f11741e8b8116a5a4d413abc
6 anzsrc-for:08
7 anzsrc-for:0801
8 schema:author N8c817efe812440b1a9b1c136ca193d2e
9 schema:citation sg:pub.10.1038/nm1653
10 sg:pub.10.2165/00002018-200932060-00007
11 https://doi.org/10.1002/ajmg.b.30975
12 https://doi.org/10.1016/j.biopsych.2009.07.019
13 https://doi.org/10.1016/j.neuroimage.2009.11.011
14 https://doi.org/10.1016/s0140-6736(05)17865-9
15 https://doi.org/10.1111/j.1365-2753.2008.01009.x
16 https://doi.org/10.1111/j.1600-0447.2006.00984.x
17 https://doi.org/10.1126/science.1066969
18 https://doi.org/10.1191/096228000701555172
19 https://doi.org/10.1191/096228000701555181
20 https://doi.org/10.4088/jcp.v67n0716
21 schema:datePublished 2012-10
22 schema:datePublishedReg 2012-10-01
23 schema:description Strategies for generating knowledge in medicine have included observation of associations in clinical or research settings and more recently, development of pathophysiological models based on molecular biology. Although critically important, they limit hypothesis generation to an incremental pace. Machine learning and data mining are alternative approaches to identifying new vistas to pursue, as is already evident in the literature. In concert with these analytic strategies, novel approaches to data collection can enhance the hypothesis pipeline as well. In data farming, data are obtained in an 'organic' way, in the sense that it is entered by patients themselves and available for harvesting. In contrast, in evidence farming (EF), it is the provider who enters medical data about individual patients. EF differs from regular electronic medical record systems because frontline providers can use it to learn from their own past experience. In addition to the possibility of generating large databases with farming approaches, it is likely that we can further harness the power of large data sets collected using either farming or more standard techniques through implementation of data-mining and machine-learning strategies. Exploiting large databases to develop new hypotheses regarding neurobiological and genetic underpinnings of psychiatric illness is useful in itself, but also affords the opportunity to identify novel mechanisms to be targeted in drug discovery and development.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N1b9d2079c733411fbd80c851bee29bb6
28 N57f0170535b6435daadfe9d8823bff0b
29 sg:journal.1115540
30 schema:name Machine learning and data mining: strategies for hypothesis generation
31 schema:pagination 956
32 schema:productId N264cb7e344d14bd8b01c14e4635c417e
33 N388021cb618d4be892c4bcbfde95fb9b
34 N8865ae6a560f4b47b2483df82c33e556
35 Nbd905ace45784ee185524074b58bff8b
36 Nbfa1119ef68a46278ca92e47b26c20ed
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032143563
38 https://doi.org/10.1038/mp.2011.173
39 schema:sdDatePublished 2019-04-11T00:56
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N58d9694c37d04613913ce94c2d879384
42 schema:url https://www.nature.com/articles/mp2011173
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N1b9d2079c733411fbd80c851bee29bb6 schema:issueNumber 10
47 rdf:type schema:PublicationIssue
48 N1d7a6ec3489348119b7a3101d3e85a2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
49 schema:name Humans
50 rdf:type schema:DefinedTerm
51 N264cb7e344d14bd8b01c14e4635c417e schema:name readcube_id
52 schema:value 99203d7fc21f2bc0841f22f58d06cb34035f2a152fc46d336a78db8279ac4f97
53 rdf:type schema:PropertyValue
54 N2f49ac38aee74adc9701e608b3102dcf rdf:first sg:person.01064242244.14
55 rdf:rest N60f7cadd76744d2fb055a8766472396d
56 N3185fea3899a40b7ad412c8cb30737c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Mental Disorders
58 rdf:type schema:DefinedTerm
59 N32a2a93562b7484a90c64218e034558e rdf:first sg:person.016405316123.77
60 rdf:rest N4834e84467574620859fa0f2e82b9af9
61 N388021cb618d4be892c4bcbfde95fb9b schema:name pubmed_id
62 schema:value 22230882
63 rdf:type schema:PropertyValue
64 N4834e84467574620859fa0f2e82b9af9 rdf:first sg:person.016363577525.33
65 rdf:rest Nb2116f836b1141478e27fdd75da59df5
66 N57b21902a2934948b1eee66e0a9c526a schema:name Fundacion Jimenez Diaz and Universidad Autonoma, CIBERSAM, Madrid, Spain
67 rdf:type schema:Organization
68 N57f0170535b6435daadfe9d8823bff0b schema:volumeNumber 17
69 rdf:type schema:PublicationVolume
70 N58d9694c37d04613913ce94c2d879384 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N60f7cadd76744d2fb055a8766472396d rdf:first sg:person.0756406326.02
73 rdf:rest rdf:nil
74 N718f5903be0e461988ac3082099da9ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Models, Biological
76 rdf:type schema:DefinedTerm
77 N82890e81b8df49498523c1d2d3e16cd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Data Mining
79 rdf:type schema:DefinedTerm
80 N8865ae6a560f4b47b2483df82c33e556 schema:name doi
81 schema:value 10.1038/mp.2011.173
82 rdf:type schema:PropertyValue
83 N8c817efe812440b1a9b1c136ca193d2e rdf:first sg:person.01274460054.07
84 rdf:rest Nde1dec9594b34f1eb88326d546c27df7
85 N90d1ecc59f6340c69b1849103bfb6f4e rdf:first sg:person.01044003054.21
86 rdf:rest N2f49ac38aee74adc9701e608b3102dcf
87 Nb2116f836b1141478e27fdd75da59df5 rdf:first sg:person.01035014675.77
88 rdf:rest N90d1ecc59f6340c69b1849103bfb6f4e
89 Nbc6ff964f11741e8b8116a5a4d413abc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Artificial Intelligence
91 rdf:type schema:DefinedTerm
92 Nbd905ace45784ee185524074b58bff8b schema:name nlm_unique_id
93 schema:value 9607835
94 rdf:type schema:PropertyValue
95 Nbfa1119ef68a46278ca92e47b26c20ed schema:name dimensions_id
96 schema:value pub.1032143563
97 rdf:type schema:PropertyValue
98 Nde1dec9594b34f1eb88326d546c27df7 rdf:first sg:person.01173175243.38
99 rdf:rest N32a2a93562b7484a90c64218e034558e
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:journal.1115540 schema:issn 1359-4184
107 1476-5578
108 schema:name Molecular Psychiatry
109 rdf:type schema:Periodical
110 sg:person.01035014675.77 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
111 schema:familyName Galfalvy
112 schema:givenName H C
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035014675.77
114 rdf:type schema:Person
115 sg:person.01044003054.21 schema:affiliation N57b21902a2934948b1eee66e0a9c526a
116 schema:familyName Blasco-Fontecilla
117 schema:givenName H
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044003054.21
119 rdf:type schema:Person
120 sg:person.01064242244.14 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
121 schema:familyName Madigan
122 schema:givenName D
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064242244.14
124 rdf:type schema:Person
125 sg:person.01173175243.38 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
126 schema:familyName Baca-Garcia
127 schema:givenName E
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173175243.38
129 rdf:type schema:Person
130 sg:person.01274460054.07 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
131 schema:familyName Oquendo
132 schema:givenName M A
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274460054.07
134 rdf:type schema:Person
135 sg:person.016363577525.33 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
136 schema:familyName Perez-Cruz
137 schema:givenName F
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363577525.33
139 rdf:type schema:Person
140 sg:person.016405316123.77 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
141 schema:familyName Artés-Rodríguez
142 schema:givenName A
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405316123.77
144 rdf:type schema:Person
145 sg:person.0756406326.02 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
146 schema:familyName Duan
147 schema:givenName N
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756406326.02
149 rdf:type schema:Person
150 sg:pub.10.1038/nm1653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053583368
151 https://doi.org/10.1038/nm1653
152 rdf:type schema:CreativeWork
153 sg:pub.10.2165/00002018-200932060-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905666
154 https://doi.org/10.2165/00002018-200932060-00007
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/ajmg.b.30975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018200504
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.biopsych.2009.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025445147
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.neuroimage.2009.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005349439
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0140-6736(05)17865-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032644747
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1365-2753.2008.01009.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019271792
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1600-0447.2006.00984.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014648892
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1066969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445665
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1191/096228000701555172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155114
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1191/096228000701555181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155115
173 rdf:type schema:CreativeWork
174 https://doi.org/10.4088/jcp.v67n0716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072209546
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
177 schema:name Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Madrid, Spain
178 Princeton University, Princeton, NJ, USA
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
181 schema:name Department of Biostatistics, Columbia University, New York, NY, USA
182 Department of Psychiatry, New York State Psychiatric Institute and Columbia University, New York, NY, USA
183 Department of Statistics, Columbia University, New York, NY, USA
184 Fundacion Jimenez Diaz and Universidad Autonoma, CIBERSAM, Madrid, Spain
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
187 schema:name Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Madrid, Spain
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...