Validation of tissue microarray technology in ovarian carcinoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-07

AUTHORS

Daniel G Rosen, Xuelin Huang, Michael T Deavers, Anais Malpica, Elvio G Silva, Jinsong Liu

ABSTRACT

High-throughput tissue microarray allows many clinical specimens to be analyzed simultaneously on a single slide. One potential limitation of tissue microarray is the correct representation of each tumor with the small tissue core. Because tumors from different organs have different levels of heterogeneity, it requires a validation study for each one of them. We compared immunostaining of Ki-67, estrogen receptors, and p53 in whole sections of 45 cases of high-grade serous ovarian carcinoma with six core samples from those sections with regard to the number of tissue cores needed to reliably represent a whole section. Staining for Ki-67 was graded high or low by automated image analysis of 10 high-power fields; staining for estrogen receptor and p53 was scored on a 0-to-3 scale. Correlation coefficients for whole-section vs core stains were 0.86 for Ki-67, 0.93 for estrogen receptors, and 0.82 for p53. A total of 54 (6.6%) of the cores were inadequate for scoring. The probability that results from one core would correctly represent all three markers in the whole section was 91%; that for two cores was 96%; and that for three cores was 98%. Our results show that analysis of a single readable core matched the staining pattern of a whole section more than 90% of the time, and analysis of two cores increased that value to more than 95%, demonstrating that ovarian carcinoma tissue microarray is a reliable technique to analyze the expression of markers. More... »

PAGES

3800120

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/modpathol.3800120

DOI

http://dx.doi.org/10.1038/modpathol.3800120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038132444

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15073602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ki-67 Antigen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Embedding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Fixation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Suppressor Protein p53", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosen", 
        "givenName": "Daniel G", 
        "id": "sg:person.01350076527.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350076527.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Xuelin", 
        "id": "sg:person.012474703017.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012474703017.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deavers", 
        "givenName": "Michael T", 
        "id": "sg:person.0575562643.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575562643.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malpica", 
        "givenName": "Anais", 
        "id": "sg:person.01275635233.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275635233.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "Elvio G", 
        "id": "sg:person.07746170277.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746170277.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jinsong", 
        "id": "sg:person.010300733047.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300733047.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00199350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002563804", 
          "https://doi.org/10.1007/bf00199350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00199350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002563804", 
          "https://doi.org/10.1007/bf00199350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9098(199712)66:4<230::aid-jso2>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004526084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-3639.2002.tb00426.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006415372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1309/hkmv-vmpp-0ch8-3dpq", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007842400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/003130201200338791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010267457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/003130201200338791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010267457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/003130201200338791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010267457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012228630", 
          "https://doi.org/10.1038/labinvest.3780347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012228630", 
          "https://doi.org/10.1038/labinvest.3780347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.1385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016829917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023558420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1096-9896(2000)9999:9999<::aid-path721>3.0.co;2-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024703869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-200203000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025684538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-200203000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025684538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/cnv-120000361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027047131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/10.7.657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027849035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(20001101)89:9<2006::aid-cncr18>3.0.co;2-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038255983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2559.2003.01556.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038763508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)64075-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045196721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045657100", 
          "https://doi.org/10.1038/labinvest.3780204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045657100", 
          "https://doi.org/10.1038/labinvest.3780204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/hupa.2002.129422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046699336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/hupa.2002.129422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046699336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049216131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0798-844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051373741", 
          "https://doi.org/10.1038/nm0798-844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074515754", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074739236", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075012378", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075060108", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079801675", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083059934", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-07", 
    "datePublishedReg": "2004-07-01", 
    "description": "High-throughput tissue microarray allows many clinical specimens to be analyzed simultaneously on a single slide. One potential limitation of tissue microarray is the correct representation of each tumor with the small tissue core. Because tumors from different organs have different levels of heterogeneity, it requires a validation study for each one of them. We compared immunostaining of Ki-67, estrogen receptors, and p53 in whole sections of 45 cases of high-grade serous ovarian carcinoma with six core samples from those sections with regard to the number of tissue cores needed to reliably represent a whole section. Staining for Ki-67 was graded high or low by automated image analysis of 10 high-power fields; staining for estrogen receptor and p53 was scored on a 0-to-3 scale. Correlation coefficients for whole-section vs core stains were 0.86 for Ki-67, 0.93 for estrogen receptors, and 0.82 for p53. A total of 54 (6.6%) of the cores were inadequate for scoring. The probability that results from one core would correctly represent all three markers in the whole section was 91%; that for two cores was 96%; and that for three cores was 98%. Our results show that analysis of a single readable core matched the staining pattern of a whole section more than 90% of the time, and analysis of two cores increased that value to more than 95%, demonstrating that ovarian carcinoma tissue microarray is a reliable technique to analyze the expression of markers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/modpathol.3800120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2435643", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1098208", 
        "issn": [
          "0893-3952", 
          "1530-0285"
        ], 
        "name": "Modern Pathology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Validation of tissue microarray technology in ovarian carcinoma", 
    "pagination": "3800120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5a6d2dfde7ee8a081be5dd0b68038c4ad7c3235c40e0b931a56aa4c68fa2274"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15073602"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8806605"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/modpathol.3800120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038132444"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/modpathol.3800120", 
      "https://app.dimensions.ai/details/publication/pub.1038132444"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/3800120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/modpathol.3800120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/modpathol.3800120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/modpathol.3800120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/modpathol.3800120'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      64 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/modpathol.3800120 schema:about N61d70a8df3b24f6e96963b429dc6e167
2 N8c1319be1d19422fa89f4010c5c67710
3 Nab38712f15124e7bbb5c1eecd5d7c382
4 Nb77fc57708074942b271bd9eea475897
5 Ncc36fb39c4744b8f953684d68973fb39
6 Nd7ad7e251bde4ec0a089472925eadb5d
7 Ndfc9fb4676a342e687228e5f6bf89ded
8 Ne0dc1f5113b647b4bee31f73bd519830
9 Ne8d7d476b2904168a24cd965f9830787
10 Neb9f4690bbb64d30bde1eda08af5380c
11 anzsrc-for:11
12 anzsrc-for:1112
13 schema:author Na631694b21bb48c288ec2df8ea134ecf
14 schema:citation sg:pub.10.1007/bf00199350
15 sg:pub.10.1038/labinvest.3780204
16 sg:pub.10.1038/labinvest.3780347
17 sg:pub.10.1038/nm0798-844
18 https://app.dimensions.ai/details/publication/pub.1074515754
19 https://app.dimensions.ai/details/publication/pub.1074739236
20 https://app.dimensions.ai/details/publication/pub.1075012378
21 https://app.dimensions.ai/details/publication/pub.1075060108
22 https://app.dimensions.ai/details/publication/pub.1079801675
23 https://app.dimensions.ai/details/publication/pub.1083059934
24 https://doi.org/10.1002/(sici)1096-9098(199712)66:4<230::aid-jso2>3.0.co;2-c
25 https://doi.org/10.1002/1096-9896(2000)9999:9999<::aid-path721>3.0.co;2-0
26 https://doi.org/10.1002/1097-0142(20001101)89:9<2006::aid-cncr18>3.0.co;2-7
27 https://doi.org/10.1002/ijc.1385
28 https://doi.org/10.1002/path.1191
29 https://doi.org/10.1002/path.893
30 https://doi.org/10.1016/s0002-9440(10)64075-8
31 https://doi.org/10.1046/j.1365-2559.2003.01556.x
32 https://doi.org/10.1053/hupa.2002.129422
33 https://doi.org/10.1080/003130201200338791
34 https://doi.org/10.1081/cnv-120000361
35 https://doi.org/10.1093/hmg/10.7.657
36 https://doi.org/10.1097/00000478-200203000-00004
37 https://doi.org/10.1111/j.1750-3639.2002.tb00426.x
38 https://doi.org/10.1309/hkmv-vmpp-0ch8-3dpq
39 schema:datePublished 2004-07
40 schema:datePublishedReg 2004-07-01
41 schema:description High-throughput tissue microarray allows many clinical specimens to be analyzed simultaneously on a single slide. One potential limitation of tissue microarray is the correct representation of each tumor with the small tissue core. Because tumors from different organs have different levels of heterogeneity, it requires a validation study for each one of them. We compared immunostaining of Ki-67, estrogen receptors, and p53 in whole sections of 45 cases of high-grade serous ovarian carcinoma with six core samples from those sections with regard to the number of tissue cores needed to reliably represent a whole section. Staining for Ki-67 was graded high or low by automated image analysis of 10 high-power fields; staining for estrogen receptor and p53 was scored on a 0-to-3 scale. Correlation coefficients for whole-section vs core stains were 0.86 for Ki-67, 0.93 for estrogen receptors, and 0.82 for p53. A total of 54 (6.6%) of the cores were inadequate for scoring. The probability that results from one core would correctly represent all three markers in the whole section was 91%; that for two cores was 96%; and that for three cores was 98%. Our results show that analysis of a single readable core matched the staining pattern of a whole section more than 90% of the time, and analysis of two cores increased that value to more than 95%, demonstrating that ovarian carcinoma tissue microarray is a reliable technique to analyze the expression of markers.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N3bfef25307424f63b27d76082cba5af4
46 Nd3488b87554d41f3a480f637a56d5edf
47 sg:journal.1098208
48 schema:name Validation of tissue microarray technology in ovarian carcinoma
49 schema:pagination 3800120
50 schema:productId N1dbb19e6d0a2494d95f24c557d85f795
51 N3f35c3cf93414870b696198a0b8da2d8
52 N956d7eb086734d92ae1aacbe3044a9b6
53 N95963f19362341ab84762b1768b17dfd
54 Nf9ba4e5209f54c24a67b2a8e28d81255
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038132444
56 https://doi.org/10.1038/modpathol.3800120
57 schema:sdDatePublished 2019-04-11T12:28
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ne5138ac692a44fd99c33a68e57714a86
60 schema:url http://www.nature.com/articles/3800120
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N1dbb19e6d0a2494d95f24c557d85f795 schema:name dimensions_id
65 schema:value pub.1038132444
66 rdf:type schema:PropertyValue
67 N3b4c2f67353a4213a74cc1805558ee5c rdf:first sg:person.0575562643.77
68 rdf:rest Nd104085595784f7187797e5e24d978a2
69 N3bfef25307424f63b27d76082cba5af4 schema:volumeNumber 17
70 rdf:type schema:PublicationVolume
71 N3f35c3cf93414870b696198a0b8da2d8 schema:name doi
72 schema:value 10.1038/modpathol.3800120
73 rdf:type schema:PropertyValue
74 N61d70a8df3b24f6e96963b429dc6e167 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Receptors, Estrogen
76 rdf:type schema:DefinedTerm
77 N7059944aac054f69a624e7602263e31a rdf:first sg:person.010300733047.04
78 rdf:rest rdf:nil
79 N8c1319be1d19422fa89f4010c5c67710 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Immunohistochemistry
81 rdf:type schema:DefinedTerm
82 N956d7eb086734d92ae1aacbe3044a9b6 schema:name readcube_id
83 schema:value b5a6d2dfde7ee8a081be5dd0b68038c4ad7c3235c40e0b931a56aa4c68fa2274
84 rdf:type schema:PropertyValue
85 N95963f19362341ab84762b1768b17dfd schema:name pubmed_id
86 schema:value 15073602
87 rdf:type schema:PropertyValue
88 Na631694b21bb48c288ec2df8ea134ecf rdf:first sg:person.01350076527.15
89 rdf:rest Nf3f52b90306544309a2c654cb6372e28
90 Nab38712f15124e7bbb5c1eecd5d7c382 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Ovarian Neoplasms
92 rdf:type schema:DefinedTerm
93 Nb77fc57708074942b271bd9eea475897 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Tissue Fixation
95 rdf:type schema:DefinedTerm
96 Ncc36fb39c4744b8f953684d68973fb39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Tumor Suppressor Protein p53
98 rdf:type schema:DefinedTerm
99 Nd104085595784f7187797e5e24d978a2 rdf:first sg:person.01275635233.76
100 rdf:rest Nfaba425691444152935339ebc45a76c7
101 Nd3488b87554d41f3a480f637a56d5edf schema:issueNumber 7
102 rdf:type schema:PublicationIssue
103 Nd7ad7e251bde4ec0a089472925eadb5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Tissue Embedding
105 rdf:type schema:DefinedTerm
106 Ndfc9fb4676a342e687228e5f6bf89ded schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Reproducibility of Results
108 rdf:type schema:DefinedTerm
109 Ne0dc1f5113b647b4bee31f73bd519830 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Humans
111 rdf:type schema:DefinedTerm
112 Ne5138ac692a44fd99c33a68e57714a86 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ne8d7d476b2904168a24cd965f9830787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Ki-67 Antigen
116 rdf:type schema:DefinedTerm
117 Neb9f4690bbb64d30bde1eda08af5380c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Female
119 rdf:type schema:DefinedTerm
120 Nf3f52b90306544309a2c654cb6372e28 rdf:first sg:person.012474703017.43
121 rdf:rest N3b4c2f67353a4213a74cc1805558ee5c
122 Nf9ba4e5209f54c24a67b2a8e28d81255 schema:name nlm_unique_id
123 schema:value 8806605
124 rdf:type schema:PropertyValue
125 Nfaba425691444152935339ebc45a76c7 rdf:first sg:person.07746170277.93
126 rdf:rest N7059944aac054f69a624e7602263e31a
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
131 schema:name Oncology and Carcinogenesis
132 rdf:type schema:DefinedTerm
133 sg:grant.2435643 http://pending.schema.org/fundedItem sg:pub.10.1038/modpathol.3800120
134 rdf:type schema:MonetaryGrant
135 sg:journal.1098208 schema:issn 0893-3952
136 1530-0285
137 schema:name Modern Pathology
138 rdf:type schema:Periodical
139 sg:person.010300733047.04 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
140 schema:familyName Liu
141 schema:givenName Jinsong
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300733047.04
143 rdf:type schema:Person
144 sg:person.012474703017.43 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
145 schema:familyName Huang
146 schema:givenName Xuelin
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012474703017.43
148 rdf:type schema:Person
149 sg:person.01275635233.76 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
150 schema:familyName Malpica
151 schema:givenName Anais
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275635233.76
153 rdf:type schema:Person
154 sg:person.01350076527.15 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
155 schema:familyName Rosen
156 schema:givenName Daniel G
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350076527.15
158 rdf:type schema:Person
159 sg:person.0575562643.77 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
160 schema:familyName Deavers
161 schema:givenName Michael T
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575562643.77
163 rdf:type schema:Person
164 sg:person.07746170277.93 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
165 schema:familyName Silva
166 schema:givenName Elvio G
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746170277.93
168 rdf:type schema:Person
169 sg:pub.10.1007/bf00199350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002563804
170 https://doi.org/10.1007/bf00199350
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/labinvest.3780204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045657100
173 https://doi.org/10.1038/labinvest.3780204
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/labinvest.3780347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012228630
176 https://doi.org/10.1038/labinvest.3780347
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nm0798-844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051373741
179 https://doi.org/10.1038/nm0798-844
180 rdf:type schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1074515754 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1074739236 schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1075012378 schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1075060108 schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1079801675 schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1083059934 schema:CreativeWork
187 https://doi.org/10.1002/(sici)1096-9098(199712)66:4<230::aid-jso2>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1004526084
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/1096-9896(2000)9999:9999<::aid-path721>3.0.co;2-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024703869
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/1097-0142(20001101)89:9<2006::aid-cncr18>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038255983
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/ijc.1385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016829917
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/path.1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049216131
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/path.893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023558420
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0002-9440(10)64075-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045196721
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1046/j.1365-2559.2003.01556.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038763508
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1053/hupa.2002.129422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046699336
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1080/003130201200338791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010267457
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1081/cnv-120000361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027047131
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/hmg/10.7.657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027849035
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1097/00000478-200203000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025684538
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/j.1750-3639.2002.tb00426.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006415372
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1309/hkmv-vmpp-0ch8-3dpq schema:sameAs https://app.dimensions.ai/details/publication/pub.1007842400
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
218 schema:name Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
219 Department of Pathology The University of Texas MD Anderson Cancer Center, Houston, TX, USA
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...