A three-tier classification system based on the depth of submucosal invasion and budding/sprouting can improve the treatment strategy for T1 ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-27

AUTHORS

Hiroshi Kawachi, Yoshinobu Eishi, Hideki Ueno, Tetsuo Nemoto, Takahiro Fujimori, Akinori Iwashita, Yoichi Ajioka, Atsushi Ochiai, Shingo Ishiguro, Tadakazu Shimoda, Hidetaka Mochizuki, Yo Kato, Hidenobu Watanabe, Morio Koike, Kenichi Sugihara

ABSTRACT

More than 85% of patients with T1 colorectal cancer have no lymph node metastasis and can be cured by endoscopic resection. To avoid unnecessary surgery after complete endoscopic resection, accurate histologic methods for evaluating resected specimens are needed to discriminate those at high risk for lymph node metastasis. A retrospective multi-institutional, cross-sectional study of 806 T1 colorectal cancer patients was conducted. A budding/sprouting score was incorporated for predicting lymph node metastasis in addition to other parameters, including the depth of submucosal invasion, histologic grade, and lymphovascular invasion. Lymph node metastasis was detected in 97 patients. Independent predictors of lymph node metastasis by multivariate analysis were depth of submucosal invasion ≥1000 μm (odds ratio (95% confidence interval)=5.56 (2.14–19.10)) and high-grade budding/sprouting (3.14 (1.91–5.21)). Among lesions with a depth of submucosal invasion ≥1000 μm, lymph node metastasis was detected in 59 (29%) of 207 patients with high-grade budding/sprouting, and in 34 (9%) of 396 with low-grade budding/sprouting. Lymph node metastasis was detected in only 4 (2%) of 203 lesions with a depth of submucosal invasion <1000 μm. Of these four tumors, three invaded lymphatic and/or venous vessels. Thus, the risk for lymph node metastasis can be classified into three groups: high risk with a depth of submucosal invasion ≥1000 μm and high-grade budding/sprouting, intermediate-risk with a depth of submucosal invasion ≥1000 μm and low-grade budding/sprouting, and low-risk with a depth of submucosal invasion <1000 μm. These findings revealed that a depth of submucosal invasion ≥1000 μm and high-grade budding/sprouting are powerful predictive parameters for lymph node metastasis in T1 colorectal cancer. This three-tier risk classification system will facilitate the decision for additional major surgery for T1 colorectal cancer patients after successful endoscopic treatment. More... »

PAGES

872-879

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/modpathol.2015.36

DOI

http://dx.doi.org/10.1038/modpathol.2015.36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049162514

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25720321


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Invasiveness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawachi", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01347670325.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347670325.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eishi", 
        "givenName": "Yoshinobu", 
        "id": "sg:person.01242554143.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242554143.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueno", 
        "givenName": "Hideki", 
        "id": "sg:person.01053200431.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053200431.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415479.a", 
          "name": [
            "Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nemoto", 
        "givenName": "Tetsuo", 
        "id": "sg:person.0653665040.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653665040.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgical and Molecular Pathology, Dokkyo Medical University, Tochigi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255137.7", 
          "name": [
            "Department of Surgical and Molecular Pathology, Dokkyo Medical University, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujimori", 
        "givenName": "Takahiro", 
        "id": "sg:person.01060021122.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060021122.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Fukuoka University Chikushi Hospital, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.413918.6", 
          "name": [
            "Department of Pathology, Fukuoka University Chikushi Hospital, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwashita", 
        "givenName": "Akinori", 
        "id": "sg:person.0623221337.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623221337.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ajioka", 
        "givenName": "Yoichi", 
        "id": "sg:person.01011417511.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011417511.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.497282.2", 
          "name": [
            "Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ochiai", 
        "givenName": "Atsushi", 
        "id": "sg:person.01001563225.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001563225.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PCL Japan, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "PCL Japan, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishiguro", 
        "givenName": "Shingo", 
        "id": "sg:person.01072757341.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072757341.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Laboratory Division, National Cancer Center Hospital, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272242.3", 
          "name": [
            "Clinical Laboratory Division, National Cancer Center Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimoda", 
        "givenName": "Tadakazu", 
        "id": "sg:person.0747677575.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747677575.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mochizuki", 
        "givenName": "Hidetaka", 
        "id": "sg:person.01207342056.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207342056.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Cancer Institute Hospital, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.486756.e", 
          "name": [
            "Department of Pathology, Cancer Institute Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Yo", 
        "id": "sg:person.0614323210.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614323210.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PCL Japan, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "PCL Japan, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Hidenobu", 
        "id": "sg:person.013231370102.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231370102.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koike", 
        "givenName": "Morio", 
        "id": "sg:person.0731707442.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731707442.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgical Oncology, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Surgical Oncology, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugihara", 
        "givenName": "Kenichi", 
        "id": "sg:person.01335627070.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335627070.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/modpathol.2010.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002108517", 
          "https://doi.org/10.1038/modpathol.2010.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.3800030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000380328", 
          "https://doi.org/10.1038/modpathol.3800030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-011-0315-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052442439", 
          "https://doi.org/10.1007/s10147-011-0315-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-004-1339-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020821843", 
          "https://doi.org/10.1007/s00535-004-1339-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02660767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040325183", 
          "https://doi.org/10.1007/bf02660767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.2012.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053715736", 
          "https://doi.org/10.1038/modpathol.2012.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s005350050330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041211446", 
          "https://doi.org/10.1007/s005350050330"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02-27", 
    "datePublishedReg": "2015-02-27", 
    "description": "More than 85% of patients with T1 colorectal cancer have no lymph node metastasis and can be cured by endoscopic resection. To avoid unnecessary surgery after complete endoscopic resection, accurate histologic methods for evaluating resected specimens are needed to discriminate those at high risk for lymph node metastasis. A retrospective multi-institutional, cross-sectional study of 806 T1 colorectal cancer patients was conducted. A budding/sprouting score was incorporated for predicting lymph node metastasis in addition to other parameters, including the depth of submucosal invasion, histologic grade, and lymphovascular invasion. Lymph node metastasis was detected in 97 patients. Independent predictors of lymph node metastasis by multivariate analysis were depth of submucosal invasion \u22651000\u2009\u03bcm (odds ratio (95% confidence interval)=5.56 (2.14\u201319.10)) and high-grade budding/sprouting (3.14 (1.91\u20135.21)). Among lesions with a depth of submucosal invasion \u22651000\u2009\u03bcm, lymph node metastasis was detected in 59 (29%) of 207 patients with high-grade budding/sprouting, and in 34 (9%) of 396 with low-grade budding/sprouting. Lymph node metastasis was detected in only 4 (2%) of 203 lesions with a depth of submucosal invasion <1000\u2009\u03bcm. Of these four tumors, three invaded lymphatic and/or venous vessels. Thus, the risk for lymph node metastasis can be classified into three groups: high risk with a depth of submucosal invasion \u22651000\u2009\u03bcm and high-grade budding/sprouting, intermediate-risk with a depth of submucosal invasion \u22651000\u2009\u03bcm and low-grade budding/sprouting, and low-risk with a depth of submucosal invasion <1000\u2009\u03bcm. These findings revealed that a depth of submucosal invasion \u22651000\u2009\u03bcm and high-grade budding/sprouting are powerful predictive parameters for lymph node metastasis in T1 colorectal cancer. This three-tier risk classification system will facilitate the decision for additional major surgery for T1 colorectal cancer patients after successful endoscopic treatment.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/modpathol.2015.36", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1098208", 
        "issn": [
          "0893-3952", 
          "1530-0285"
        ], 
        "name": "Modern Pathology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "lymph node metastasis", 
      "colorectal cancer patients", 
      "node metastasis", 
      "submucosal invasion", 
      "colorectal cancer", 
      "endoscopic resection", 
      "cancer patients", 
      "high risk", 
      "additional major surgery", 
      "complete endoscopic resection", 
      "successful endoscopic treatment", 
      "retrospective multicenter study", 
      "cross-sectional study", 
      "risk classification system", 
      "powerful predictive parameters", 
      "lymphovascular invasion", 
      "independent predictors", 
      "major surgery", 
      "endoscopic treatment", 
      "resected specimens", 
      "multicenter study", 
      "histologic grade", 
      "three-tier classification system", 
      "unnecessary surgery", 
      "treatment strategies", 
      "patients", 
      "lymph", 
      "metastasis", 
      "multivariate analysis", 
      "predictive parameters", 
      "venous vessels", 
      "classification system", 
      "histologic methods", 
      "cancer", 
      "resection", 
      "surgery", 
      "invasion", 
      "lesions", 
      "risk", 
      "sprouting", 
      "tumors", 
      "treatment", 
      "scores", 
      "predictors", 
      "study", 
      "vessels", 
      "grade", 
      "group", 
      "findings", 
      "specimens", 
      "addition", 
      "strategies", 
      "analysis", 
      "parameters", 
      "decisions", 
      "system", 
      "method", 
      "depth", 
      "sprouting score"
    ], 
    "name": "A three-tier classification system based on the depth of submucosal invasion and budding/sprouting can improve the treatment strategy for T1 colorectal cancer: a retrospective multicenter study", 
    "pagination": "872-879", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049162514"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/modpathol.2015.36"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25720321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/modpathol.2015.36", 
      "https://app.dimensions.ai/details/publication/pub.1049162514"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_656.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/modpathol.2015.36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2015.36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2015.36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2015.36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2015.36'


 

This table displays all metadata directly associated to this object as RDF triples.

332 TRIPLES      22 PREDICATES      106 URIs      91 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/modpathol.2015.36 schema:about N0000cc1ef40147e0805c6a3287d5ac36
2 N1847781ef6e048cb9474dd6c7ccfb5b7
3 N18daabed40f14a559b709d8b1c45fe80
4 N267609ed145f4644924547bfc433a5cb
5 N3b8494b4eddf478092d4016566630f4d
6 N4640d2cb345947c8896d0031b2d324d7
7 N9799d964643e4ccc8e8ca44ce9a80e3d
8 N9e2571ab90044ab3a74b3b69a62eaa0c
9 N9f867b1124e04d6daa81cc233ae07f94
10 Ncaf5d3ee36164b5f9f2572593fc6a64d
11 Ndef85ebcd30c4da8a5e77a492392e41a
12 Nee0a669ce5e14d65b838fe15b32f5876
13 Nf06575513d26465199f94e551fae4232
14 Nff0aba86d871496aa3a236df431e5609
15 anzsrc-for:11
16 anzsrc-for:1112
17 schema:author Nb4b20a96629c4224bd3cb779064f2fe5
18 schema:citation sg:pub.10.1007/bf02660767
19 sg:pub.10.1007/s00535-004-1339-4
20 sg:pub.10.1007/s005350050330
21 sg:pub.10.1007/s10147-011-0315-2
22 sg:pub.10.1038/modpathol.2010.88
23 sg:pub.10.1038/modpathol.2012.94
24 sg:pub.10.1038/modpathol.3800030
25 schema:datePublished 2015-02-27
26 schema:datePublishedReg 2015-02-27
27 schema:description More than 85% of patients with T1 colorectal cancer have no lymph node metastasis and can be cured by endoscopic resection. To avoid unnecessary surgery after complete endoscopic resection, accurate histologic methods for evaluating resected specimens are needed to discriminate those at high risk for lymph node metastasis. A retrospective multi-institutional, cross-sectional study of 806 T1 colorectal cancer patients was conducted. A budding/sprouting score was incorporated for predicting lymph node metastasis in addition to other parameters, including the depth of submucosal invasion, histologic grade, and lymphovascular invasion. Lymph node metastasis was detected in 97 patients. Independent predictors of lymph node metastasis by multivariate analysis were depth of submucosal invasion ≥1000 μm (odds ratio (95% confidence interval)=5.56 (2.14–19.10)) and high-grade budding/sprouting (3.14 (1.91–5.21)). Among lesions with a depth of submucosal invasion ≥1000 μm, lymph node metastasis was detected in 59 (29%) of 207 patients with high-grade budding/sprouting, and in 34 (9%) of 396 with low-grade budding/sprouting. Lymph node metastasis was detected in only 4 (2%) of 203 lesions with a depth of submucosal invasion <1000 μm. Of these four tumors, three invaded lymphatic and/or venous vessels. Thus, the risk for lymph node metastasis can be classified into three groups: high risk with a depth of submucosal invasion ≥1000 μm and high-grade budding/sprouting, intermediate-risk with a depth of submucosal invasion ≥1000 μm and low-grade budding/sprouting, and low-risk with a depth of submucosal invasion <1000 μm. These findings revealed that a depth of submucosal invasion ≥1000 μm and high-grade budding/sprouting are powerful predictive parameters for lymph node metastasis in T1 colorectal cancer. This three-tier risk classification system will facilitate the decision for additional major surgery for T1 colorectal cancer patients after successful endoscopic treatment.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N6922c6b3e9c746e586170e6b174458ba
32 Nb599fdb18aae4f55b38bedcb2684b6cc
33 sg:journal.1098208
34 schema:keywords addition
35 additional major surgery
36 analysis
37 cancer
38 cancer patients
39 classification system
40 colorectal cancer
41 colorectal cancer patients
42 complete endoscopic resection
43 cross-sectional study
44 decisions
45 depth
46 endoscopic resection
47 endoscopic treatment
48 findings
49 grade
50 group
51 high risk
52 histologic grade
53 histologic methods
54 independent predictors
55 invasion
56 lesions
57 lymph
58 lymph node metastasis
59 lymphovascular invasion
60 major surgery
61 metastasis
62 method
63 multicenter study
64 multivariate analysis
65 node metastasis
66 parameters
67 patients
68 powerful predictive parameters
69 predictive parameters
70 predictors
71 resected specimens
72 resection
73 retrospective multicenter study
74 risk
75 risk classification system
76 scores
77 specimens
78 sprouting
79 sprouting score
80 strategies
81 study
82 submucosal invasion
83 successful endoscopic treatment
84 surgery
85 system
86 three-tier classification system
87 treatment
88 treatment strategies
89 tumors
90 unnecessary surgery
91 venous vessels
92 vessels
93 schema:name A three-tier classification system based on the depth of submucosal invasion and budding/sprouting can improve the treatment strategy for T1 colorectal cancer: a retrospective multicenter study
94 schema:pagination 872-879
95 schema:productId N1258220048204ce091165cc4ab516f58
96 N30b65d8679ac47378adb62f67fba6102
97 N9b63db8e162648d4bd2e6f85ffcd324d
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049162514
99 https://doi.org/10.1038/modpathol.2015.36
100 schema:sdDatePublished 2022-05-20T07:30
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N211cf3aa6421484eb246cabcd64e60b1
103 schema:url https://doi.org/10.1038/modpathol.2015.36
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N0000cc1ef40147e0805c6a3287d5ac36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cross-Sectional Studies
109 rdf:type schema:DefinedTerm
110 N016918a25814400f9708ca4e483afb06 rdf:first sg:person.0614323210.10
111 rdf:rest N99e517d41a9e4874b922e8fdfa8ce8f6
112 N1258220048204ce091165cc4ab516f58 schema:name dimensions_id
113 schema:value pub.1049162514
114 rdf:type schema:PropertyValue
115 N159d3a8d55df409e811b314b4006ad17 rdf:first sg:person.01207342056.64
116 rdf:rest N016918a25814400f9708ca4e483afb06
117 N1847781ef6e048cb9474dd6c7ccfb5b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Neoplasm Invasiveness
119 rdf:type schema:DefinedTerm
120 N18daabed40f14a559b709d8b1c45fe80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Neoplasm Staging
122 rdf:type schema:DefinedTerm
123 N211cf3aa6421484eb246cabcd64e60b1 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 N267609ed145f4644924547bfc433a5cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Female
127 rdf:type schema:DefinedTerm
128 N30b65d8679ac47378adb62f67fba6102 schema:name doi
129 schema:value 10.1038/modpathol.2015.36
130 rdf:type schema:PropertyValue
131 N3b8494b4eddf478092d4016566630f4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Young Adult
133 rdf:type schema:DefinedTerm
134 N4018022659204fc3868adce00fb9dd69 rdf:first sg:person.0653665040.46
135 rdf:rest N5fa7b54d2b77450f86a5a35d47fe96a0
136 N4640d2cb345947c8896d0031b2d324d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Colorectal Neoplasms
138 rdf:type schema:DefinedTerm
139 N59d5bf9d1cbf45aa8543cdc753d5d5a3 rdf:first sg:person.01242554143.18
140 rdf:rest N7b44541d0229406991484f16e9d2225e
141 N5fa7b54d2b77450f86a5a35d47fe96a0 rdf:first sg:person.01060021122.99
142 rdf:rest N6bc1ea82f6454a9d876377fdc182c408
143 N6922c6b3e9c746e586170e6b174458ba schema:issueNumber 6
144 rdf:type schema:PublicationIssue
145 N6bc1ea82f6454a9d876377fdc182c408 rdf:first sg:person.0623221337.30
146 rdf:rest Nbd02b1744e17426a93939f32db52fef2
147 N7b44541d0229406991484f16e9d2225e rdf:first sg:person.01053200431.41
148 rdf:rest N4018022659204fc3868adce00fb9dd69
149 N7ee4db6271a947e79df2152d97d3f0d7 rdf:first sg:person.01072757341.38
150 rdf:rest Naa19319ac270436cb5d6c673e95f4088
151 N9799d964643e4ccc8e8ca44ce9a80e3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Middle Aged
153 rdf:type schema:DefinedTerm
154 N99e517d41a9e4874b922e8fdfa8ce8f6 rdf:first sg:person.013231370102.59
155 rdf:rest Nf8476b7ed2844e27982f6e83a2ed8e7f
156 N9b63db8e162648d4bd2e6f85ffcd324d schema:name pubmed_id
157 schema:value 25720321
158 rdf:type schema:PropertyValue
159 N9e2571ab90044ab3a74b3b69a62eaa0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 N9f867b1124e04d6daa81cc233ae07f94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Lymphatic Metastasis
164 rdf:type schema:DefinedTerm
165 Naa19319ac270436cb5d6c673e95f4088 rdf:first sg:person.0747677575.30
166 rdf:rest N159d3a8d55df409e811b314b4006ad17
167 Nb4b20a96629c4224bd3cb779064f2fe5 rdf:first sg:person.01347670325.37
168 rdf:rest N59d5bf9d1cbf45aa8543cdc753d5d5a3
169 Nb599fdb18aae4f55b38bedcb2684b6cc schema:volumeNumber 28
170 rdf:type schema:PublicationVolume
171 Nbd02b1744e17426a93939f32db52fef2 rdf:first sg:person.01011417511.51
172 rdf:rest Ne6f8b20e9eab401a873f301428a8cb7e
173 Ncaf5d3ee36164b5f9f2572593fc6a64d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Aged
175 rdf:type schema:DefinedTerm
176 Nda4a32beac0946deb56de1b990bcf67f rdf:first sg:person.01335627070.04
177 rdf:rest rdf:nil
178 Ndef85ebcd30c4da8a5e77a492392e41a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged, 80 and over
180 rdf:type schema:DefinedTerm
181 Ne6f8b20e9eab401a873f301428a8cb7e rdf:first sg:person.01001563225.40
182 rdf:rest N7ee4db6271a947e79df2152d97d3f0d7
183 Nee0a669ce5e14d65b838fe15b32f5876 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Retrospective Studies
185 rdf:type schema:DefinedTerm
186 Nf06575513d26465199f94e551fae4232 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Adult
188 rdf:type schema:DefinedTerm
189 Nf8476b7ed2844e27982f6e83a2ed8e7f rdf:first sg:person.0731707442.52
190 rdf:rest Nda4a32beac0946deb56de1b990bcf67f
191 Nff0aba86d871496aa3a236df431e5609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Male
193 rdf:type schema:DefinedTerm
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
198 schema:name Oncology and Carcinogenesis
199 rdf:type schema:DefinedTerm
200 sg:journal.1098208 schema:issn 0893-3952
201 1530-0285
202 schema:name Modern Pathology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01001563225.40 schema:affiliation grid-institutes:grid.497282.2
206 schema:familyName Ochiai
207 schema:givenName Atsushi
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001563225.40
209 rdf:type schema:Person
210 sg:person.01011417511.51 schema:affiliation grid-institutes:grid.260975.f
211 schema:familyName Ajioka
212 schema:givenName Yoichi
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011417511.51
214 rdf:type schema:Person
215 sg:person.01053200431.41 schema:affiliation grid-institutes:grid.416614.0
216 schema:familyName Ueno
217 schema:givenName Hideki
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053200431.41
219 rdf:type schema:Person
220 sg:person.01060021122.99 schema:affiliation grid-institutes:grid.255137.7
221 schema:familyName Fujimori
222 schema:givenName Takahiro
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060021122.99
224 rdf:type schema:Person
225 sg:person.01072757341.38 schema:affiliation grid-institutes:None
226 schema:familyName Ishiguro
227 schema:givenName Shingo
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072757341.38
229 rdf:type schema:Person
230 sg:person.01207342056.64 schema:affiliation grid-institutes:grid.416614.0
231 schema:familyName Mochizuki
232 schema:givenName Hidetaka
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207342056.64
234 rdf:type schema:Person
235 sg:person.01242554143.18 schema:affiliation grid-institutes:grid.265073.5
236 schema:familyName Eishi
237 schema:givenName Yoshinobu
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242554143.18
239 rdf:type schema:Person
240 sg:person.013231370102.59 schema:affiliation grid-institutes:None
241 schema:familyName Watanabe
242 schema:givenName Hidenobu
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231370102.59
244 rdf:type schema:Person
245 sg:person.01335627070.04 schema:affiliation grid-institutes:grid.265073.5
246 schema:familyName Sugihara
247 schema:givenName Kenichi
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335627070.04
249 rdf:type schema:Person
250 sg:person.01347670325.37 schema:affiliation grid-institutes:grid.265073.5
251 schema:familyName Kawachi
252 schema:givenName Hiroshi
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347670325.37
254 rdf:type schema:Person
255 sg:person.0614323210.10 schema:affiliation grid-institutes:grid.486756.e
256 schema:familyName Kato
257 schema:givenName Yo
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614323210.10
259 rdf:type schema:Person
260 sg:person.0623221337.30 schema:affiliation grid-institutes:grid.413918.6
261 schema:familyName Iwashita
262 schema:givenName Akinori
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623221337.30
264 rdf:type schema:Person
265 sg:person.0653665040.46 schema:affiliation grid-institutes:grid.415479.a
266 schema:familyName Nemoto
267 schema:givenName Tetsuo
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653665040.46
269 rdf:type schema:Person
270 sg:person.0731707442.52 schema:affiliation grid-institutes:grid.265073.5
271 schema:familyName Koike
272 schema:givenName Morio
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731707442.52
274 rdf:type schema:Person
275 sg:person.0747677575.30 schema:affiliation grid-institutes:grid.272242.3
276 schema:familyName Shimoda
277 schema:givenName Tadakazu
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747677575.30
279 rdf:type schema:Person
280 sg:pub.10.1007/bf02660767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040325183
281 https://doi.org/10.1007/bf02660767
282 rdf:type schema:CreativeWork
283 sg:pub.10.1007/s00535-004-1339-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020821843
284 https://doi.org/10.1007/s00535-004-1339-4
285 rdf:type schema:CreativeWork
286 sg:pub.10.1007/s005350050330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041211446
287 https://doi.org/10.1007/s005350050330
288 rdf:type schema:CreativeWork
289 sg:pub.10.1007/s10147-011-0315-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052442439
290 https://doi.org/10.1007/s10147-011-0315-2
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/modpathol.2010.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002108517
293 https://doi.org/10.1038/modpathol.2010.88
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/modpathol.2012.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053715736
296 https://doi.org/10.1038/modpathol.2012.94
297 rdf:type schema:CreativeWork
298 sg:pub.10.1038/modpathol.3800030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000380328
299 https://doi.org/10.1038/modpathol.3800030
300 rdf:type schema:CreativeWork
301 grid-institutes:None schema:alternateName PCL Japan, Tokyo, Japan
302 schema:name PCL Japan, Tokyo, Japan
303 rdf:type schema:Organization
304 grid-institutes:grid.255137.7 schema:alternateName Department of Surgical and Molecular Pathology, Dokkyo Medical University, Tochigi, Japan
305 schema:name Department of Surgical and Molecular Pathology, Dokkyo Medical University, Tochigi, Japan
306 rdf:type schema:Organization
307 grid-institutes:grid.260975.f schema:alternateName Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
308 schema:name Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
309 rdf:type schema:Organization
310 grid-institutes:grid.265073.5 schema:alternateName Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
311 Department of Surgical Oncology, Tokyo Medical and Dental University, Tokyo, Japan
312 schema:name Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
313 Department of Surgical Oncology, Tokyo Medical and Dental University, Tokyo, Japan
314 rdf:type schema:Organization
315 grid-institutes:grid.272242.3 schema:alternateName Clinical Laboratory Division, National Cancer Center Hospital, Tokyo, Japan
316 schema:name Clinical Laboratory Division, National Cancer Center Hospital, Tokyo, Japan
317 rdf:type schema:Organization
318 grid-institutes:grid.413918.6 schema:alternateName Department of Pathology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
319 schema:name Department of Pathology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
320 rdf:type schema:Organization
321 grid-institutes:grid.415479.a schema:alternateName Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
322 schema:name Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
323 rdf:type schema:Organization
324 grid-institutes:grid.416614.0 schema:alternateName Department of Surgery, National Defense Medical College, Tokorozawa, Japan
325 schema:name Department of Surgery, National Defense Medical College, Tokorozawa, Japan
326 rdf:type schema:Organization
327 grid-institutes:grid.486756.e schema:alternateName Department of Pathology, Cancer Institute Hospital, Tokyo, Japan
328 schema:name Department of Pathology, Cancer Institute Hospital, Tokyo, Japan
329 rdf:type schema:Organization
330 grid-institutes:grid.497282.2 schema:alternateName Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
331 schema:name Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
332 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...