Nuclear to non-nuclear Pmel17/gp100 expression (HMB45 staining) as a discriminator between benign and malignant melanocytic lesions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-06-13

AUTHORS

Bonnie E Gould Rothberg, Christopher B Moeder, Harriet Kluger, Ruth Halaban, David E Elder, George F Murphy, Alexander Lazar, Victor Prieto, Lynn McDivitt Duncan, David L Rimm

ABSTRACT

HMB45 is a mouse monoclonal antibody raised against Pmel17/gp100, a melanoma-specific marker, which is routinely used in the diagnosis of primary cutaneous malignant melanoma. The standard expression pattern for a positive HMB45 staining result on immunohistochemistry is based upon the results of chromogenic-based methods. We re-evaluated the patterns of HMB45 staining across the 480-core ‘SPORE melanoma progression array’ containing lesions representing the spectrum of melanocytic lesions ranging from thin nevus to visceral metastasis using the fluorescence-based staining technique and automated quantitative analysis (AQUA) of the obtained digital images. The methods validated the expected cytoplasmic HMB45 staining pattern in 70/108 malignant lesions and in the epithelial components of nevus specimens. However, the fluorescence-based approach revealed a nuclear gp100 localization present in the dermal component of all nevi that was not seen before. This nuclear localization could not be observed on routine chromogenic stains, because the standard hematoxylin nuclear counterstain overwhelms the weak nuclear HMB45 stain. The thin (0.450±0.253) and thick (0.513±0.227) nevi had strongly positive mean ln(nuclear/non-nuclear AQUA score ratios), which are significantly higher than those from the group of malignant lesions (P<0.0001). This finding was reproduced on a smaller but independent progression array composed of nevi and melanomas from the Yale Pathology archives (P<0.01). The odds ratio associated with a sample being a nevus was 2.24 (95% CI: 1.87–2.69, P<0.0001) for each 0.1 unit increase of the ln(nuclear/non-nuclear AQUA score ratio) to yield an ROC curve with 0.93 units of area and a simultaneously maximized sensitivity of 0.92 and specificity of 0.80 for distinguishing benign nevi from malignant melanomas. On the basis of this preliminary study, we propose that the ratio of nuclear to non-nuclear HMB45 staining may be useful for diagnostic challenges in melanocytic lesions. More... »

PAGES

1121-1129

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/modpathol.2008.100

DOI

http://dx.doi.org/10.1038/modpathol.2008.100

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044252888

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18552823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antigens, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Nucleus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescent Antibody Technique, Indirect", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoenzyme Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melanoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melanoma-Specific Antigens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Glycoproteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nevus, Pigmented", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skin Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Array Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "gp100 Melanoma Antigen", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rothberg", 
        "givenName": "Bonnie E Gould", 
        "id": "sg:person.011224425457.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011224425457.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moeder", 
        "givenName": "Christopher B", 
        "id": "sg:person.01321753022.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321753022.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kluger", 
        "givenName": "Harriet", 
        "id": "sg:person.01336750727.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halaban", 
        "givenName": "Ruth", 
        "id": "sg:person.053601122.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053601122.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elder", 
        "givenName": "David E", 
        "id": "sg:person.01165565067.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165565067.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murphy", 
        "givenName": "George F", 
        "id": "sg:person.012225214447.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012225214447.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazar", 
        "givenName": "Alexander", 
        "id": "sg:person.010255222337.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255222337.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prieto", 
        "givenName": "Victor", 
        "id": "sg:person.01224332540.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224332540.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Massachusetts General Hospital, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Department of Pathology, Massachusetts General Hospital, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duncan", 
        "givenName": "Lynn McDivitt", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt0806-914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020293069", 
          "https://doi.org/10.1038/nbt0806-914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06-13", 
    "datePublishedReg": "2008-06-13", 
    "description": "HMB45 is a mouse monoclonal antibody raised against Pmel17/gp100, a melanoma-specific marker, which is routinely used in the diagnosis of primary cutaneous malignant melanoma. The standard expression pattern for a positive HMB45 staining result on immunohistochemistry is based upon the results of chromogenic-based methods. We re-evaluated the patterns of HMB45 staining across the 480-core \u2018SPORE melanoma progression array\u2019 containing lesions representing the spectrum of melanocytic lesions ranging from thin nevus to visceral metastasis using the fluorescence-based staining technique and automated quantitative analysis (AQUA) of the obtained digital images. The methods validated the expected cytoplasmic HMB45 staining pattern in 70/108 malignant lesions and in the epithelial components of nevus specimens. However, the fluorescence-based approach revealed a nuclear gp100 localization present in the dermal component of all nevi that was not seen before. This nuclear localization could not be observed on routine chromogenic stains, because the standard hematoxylin nuclear counterstain overwhelms the weak nuclear HMB45 stain. The thin (0.450\u00b10.253) and thick (0.513\u00b10.227) nevi had strongly positive mean ln(nuclear/non-nuclear AQUA score ratios), which are significantly higher than those from the group of malignant lesions (P<0.0001). This finding was reproduced on a smaller but independent progression array composed of nevi and melanomas from the Yale Pathology archives (P<0.01). The odds ratio associated with a sample being a nevus was 2.24 (95% CI: 1.87\u20132.69, P<0.0001) for each 0.1 unit increase of the ln(nuclear/non-nuclear AQUA score ratio) to yield an ROC curve with 0.93 units of area and a simultaneously maximized sensitivity of 0.92 and specificity of 0.80 for distinguishing benign nevi from malignant melanomas. On the basis of this preliminary study, we propose that the ratio of nuclear to non-nuclear HMB45 staining may be useful for diagnostic challenges in melanocytic lesions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/modpathol.2008.100", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2478108", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1098208", 
        "issn": [
          "0893-3952", 
          "1530-0285"
        ], 
        "name": "Modern Pathology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "melanocytic lesions", 
      "malignant melanoma", 
      "malignant lesions", 
      "primary cutaneous malignant melanoma", 
      "cutaneous malignant melanoma", 
      "Yale Pathology archives", 
      "mouse monoclonal antibody", 
      "melanoma-specific markers", 
      "visceral metastases", 
      "malignant melanocytic lesions", 
      "diagnostic challenge", 
      "odds ratio", 
      "pathology archives", 
      "HMB45 staining", 
      "epithelial component", 
      "lesions", 
      "gp100 expression", 
      "monoclonal antibodies", 
      "nevi", 
      "HMB45", 
      "melanoma", 
      "staining results", 
      "chromogenic stain", 
      "benign nevi", 
      "ROC curve", 
      "ratio of nuclear", 
      "dermal component", 
      "Pmel17/gp100", 
      "unit increase", 
      "staining techniques", 
      "stain", 
      "preliminary study", 
      "expression patterns", 
      "nuclear counterstain", 
      "nuclear localization", 
      "gp100", 
      "metastasis", 
      "immunohistochemistry", 
      "diagnosis", 
      "antibodies", 
      "staining", 
      "markers", 
      "localization", 
      "group", 
      "patterns", 
      "expression", 
      "findings", 
      "specificity", 
      "study", 
      "quantitative analysis", 
      "counterstain", 
      "ratio", 
      "sensitivity", 
      "increase", 
      "results", 
      "samples", 
      "components", 
      "units", 
      "curves", 
      "method", 
      "analysis", 
      "area", 
      "challenges", 
      "nuclear", 
      "fluorescence-based approach", 
      "discriminator", 
      "basis", 
      "technique", 
      "approach", 
      "images", 
      "array", 
      "digital images", 
      "spectra", 
      "unit of area", 
      "archives"
    ], 
    "name": "Nuclear to non-nuclear Pmel17/gp100 expression (HMB45 staining) as a discriminator between benign and malignant melanocytic lesions", 
    "pagination": "1121-1129", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044252888"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/modpathol.2008.100"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18552823"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/modpathol.2008.100", 
      "https://app.dimensions.ai/details/publication/pub.1044252888"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_459.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/modpathol.2008.100"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2008.100'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2008.100'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2008.100'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/modpathol.2008.100'


 

This table displays all metadata directly associated to this object as RDF triples.

290 TRIPLES      21 PREDICATES      118 URIs      108 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/modpathol.2008.100 schema:about N090c8ad5f3c94f82b35b0a6ec1422338
2 N1f2afcc1a64146629c774cdac2d57caf
3 N23a8200f0b6e4074ac2ae44c113adda5
4 N2ed7e6c9b46c44ec9c840ecf59d05334
5 N38166c16139d448b81f85610d2a78c01
6 N403cda7380dd47249e44ce0b7d403b6c
7 N578ec26bb1054f96bf41f8caf0e64e27
8 N706039969e2b4b178d802c7499c277ce
9 N724ebab48a92467a80ddba0c6c85bf6b
10 N7c624e8184fa449fa591528980a96798
11 N8292224b087e44a981b5b7887ed8b305
12 Na5f04331092543cf819614556340e212
13 Nb1b6cf39d7064654a163d4f1b3d48ebe
14 Nc5f8aaf6170a4c638db22854066e5ba5
15 Ne660c68e208346c8a6b69ab848dfdcd8
16 Nf42d8c55cd1e4fbbbab9b67a7ff08b4b
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author N03a7dcbc46104587b7cb00e86c43d071
20 schema:citation sg:pub.10.1038/nbt0806-914
21 sg:pub.10.1038/nm791
22 schema:datePublished 2008-06-13
23 schema:datePublishedReg 2008-06-13
24 schema:description HMB45 is a mouse monoclonal antibody raised against Pmel17/gp100, a melanoma-specific marker, which is routinely used in the diagnosis of primary cutaneous malignant melanoma. The standard expression pattern for a positive HMB45 staining result on immunohistochemistry is based upon the results of chromogenic-based methods. We re-evaluated the patterns of HMB45 staining across the 480-core ‘SPORE melanoma progression array’ containing lesions representing the spectrum of melanocytic lesions ranging from thin nevus to visceral metastasis using the fluorescence-based staining technique and automated quantitative analysis (AQUA) of the obtained digital images. The methods validated the expected cytoplasmic HMB45 staining pattern in 70/108 malignant lesions and in the epithelial components of nevus specimens. However, the fluorescence-based approach revealed a nuclear gp100 localization present in the dermal component of all nevi that was not seen before. This nuclear localization could not be observed on routine chromogenic stains, because the standard hematoxylin nuclear counterstain overwhelms the weak nuclear HMB45 stain. The thin (0.450±0.253) and thick (0.513±0.227) nevi had strongly positive mean ln(nuclear/non-nuclear AQUA score ratios), which are significantly higher than those from the group of malignant lesions (P<0.0001). This finding was reproduced on a smaller but independent progression array composed of nevi and melanomas from the Yale Pathology archives (P<0.01). The odds ratio associated with a sample being a nevus was 2.24 (95% CI: 1.87–2.69, P<0.0001) for each 0.1 unit increase of the ln(nuclear/non-nuclear AQUA score ratio) to yield an ROC curve with 0.93 units of area and a simultaneously maximized sensitivity of 0.92 and specificity of 0.80 for distinguishing benign nevi from malignant melanomas. On the basis of this preliminary study, we propose that the ratio of nuclear to non-nuclear HMB45 staining may be useful for diagnostic challenges in melanocytic lesions.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N40034314c003411cb22994e4837e569e
28 N68cece5df3614a39a8c6a4c737cbd187
29 sg:journal.1098208
30 schema:keywords HMB45
31 HMB45 staining
32 Pmel17/gp100
33 ROC curve
34 Yale Pathology archives
35 analysis
36 antibodies
37 approach
38 archives
39 area
40 array
41 basis
42 benign nevi
43 challenges
44 chromogenic stain
45 components
46 counterstain
47 curves
48 cutaneous malignant melanoma
49 dermal component
50 diagnosis
51 diagnostic challenge
52 digital images
53 discriminator
54 epithelial component
55 expression
56 expression patterns
57 findings
58 fluorescence-based approach
59 gp100
60 gp100 expression
61 group
62 images
63 immunohistochemistry
64 increase
65 lesions
66 localization
67 malignant lesions
68 malignant melanocytic lesions
69 malignant melanoma
70 markers
71 melanocytic lesions
72 melanoma
73 melanoma-specific markers
74 metastasis
75 method
76 monoclonal antibodies
77 mouse monoclonal antibody
78 nevi
79 nuclear
80 nuclear counterstain
81 nuclear localization
82 odds ratio
83 pathology archives
84 patterns
85 preliminary study
86 primary cutaneous malignant melanoma
87 quantitative analysis
88 ratio
89 ratio of nuclear
90 results
91 samples
92 sensitivity
93 specificity
94 spectra
95 stain
96 staining
97 staining results
98 staining techniques
99 study
100 technique
101 unit increase
102 unit of area
103 units
104 visceral metastases
105 schema:name Nuclear to non-nuclear Pmel17/gp100 expression (HMB45 staining) as a discriminator between benign and malignant melanocytic lesions
106 schema:pagination 1121-1129
107 schema:productId Nb1746f7c9e6b404d9a5aedf7e4c7cdc0
108 Nc7ec01e165c342a3a649e703c3ac28d5
109 Nf4252508fe3e4fb6b01ba06afbe90a62
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044252888
111 https://doi.org/10.1038/modpathol.2008.100
112 schema:sdDatePublished 2022-10-01T06:34
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N090a75383bcc4353931905212cb0e96a
115 schema:url https://doi.org/10.1038/modpathol.2008.100
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N03a7dcbc46104587b7cb00e86c43d071 rdf:first sg:person.011224425457.45
120 rdf:rest N656f47a9547a45d6b3af017589229ad7
121 N090a75383bcc4353931905212cb0e96a schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N090c8ad5f3c94f82b35b0a6ec1422338 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Neoplasm Proteins
125 rdf:type schema:DefinedTerm
126 N0b02c6011ca047cab562829b3744faba rdf:first sg:person.01224332540.84
127 rdf:rest N103d9921b715487ea0d2ed40d5f5a027
128 N103d9921b715487ea0d2ed40d5f5a027 rdf:first Na7c6c8cff80044e0ac744816566f5024
129 rdf:rest N975ab215d44d4b6d822584f8566b7bc6
130 N1f2afcc1a64146629c774cdac2d57caf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 N23a8200f0b6e4074ac2ae44c113adda5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Melanoma-Specific Antigens
135 rdf:type schema:DefinedTerm
136 N2ed7e6c9b46c44ec9c840ecf59d05334 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Biomarkers, Tumor
138 rdf:type schema:DefinedTerm
139 N2f18b2062d38422b94212dceffdbb26b rdf:first sg:person.012225214447.99
140 rdf:rest N52593691238b4992913be19a7c1cabda
141 N38166c16139d448b81f85610d2a78c01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Immunoenzyme Techniques
143 rdf:type schema:DefinedTerm
144 N40034314c003411cb22994e4837e569e schema:volumeNumber 21
145 rdf:type schema:PublicationVolume
146 N403cda7380dd47249e44ce0b7d403b6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Nevus, Pigmented
148 rdf:type schema:DefinedTerm
149 N52593691238b4992913be19a7c1cabda rdf:first sg:person.010255222337.53
150 rdf:rest N0b02c6011ca047cab562829b3744faba
151 N578ec26bb1054f96bf41f8caf0e64e27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Melanoma
153 rdf:type schema:DefinedTerm
154 N656f47a9547a45d6b3af017589229ad7 rdf:first sg:person.01321753022.03
155 rdf:rest N6749d83192e443f5b4bfc06e3aba39d9
156 N6749d83192e443f5b4bfc06e3aba39d9 rdf:first sg:person.01336750727.45
157 rdf:rest N7304f7d82ac64ff68caf0e862d339bb9
158 N68cece5df3614a39a8c6a4c737cbd187 schema:issueNumber 9
159 rdf:type schema:PublicationIssue
160 N706039969e2b4b178d802c7499c277ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cell Nucleus
162 rdf:type schema:DefinedTerm
163 N724ebab48a92467a80ddba0c6c85bf6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Skin Neoplasms
165 rdf:type schema:DefinedTerm
166 N7304f7d82ac64ff68caf0e862d339bb9 rdf:first sg:person.053601122.01
167 rdf:rest N775fc55d00f54425a43dace957851ea2
168 N775fc55d00f54425a43dace957851ea2 rdf:first sg:person.01165565067.84
169 rdf:rest N2f18b2062d38422b94212dceffdbb26b
170 N7c624e8184fa449fa591528980a96798 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Membrane Glycoproteins
172 rdf:type schema:DefinedTerm
173 N8292224b087e44a981b5b7887ed8b305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Diagnosis, Differential
175 rdf:type schema:DefinedTerm
176 N975ab215d44d4b6d822584f8566b7bc6 rdf:first sg:person.0754207153.13
177 rdf:rest rdf:nil
178 Na5f04331092543cf819614556340e212 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Tissue Array Analysis
180 rdf:type schema:DefinedTerm
181 Na7c6c8cff80044e0ac744816566f5024 schema:affiliation grid-institutes:grid.32224.35
182 schema:familyName Duncan
183 schema:givenName Lynn McDivitt
184 rdf:type schema:Person
185 Nb1746f7c9e6b404d9a5aedf7e4c7cdc0 schema:name pubmed_id
186 schema:value 18552823
187 rdf:type schema:PropertyValue
188 Nb1b6cf39d7064654a163d4f1b3d48ebe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name gp100 Melanoma Antigen
190 rdf:type schema:DefinedTerm
191 Nc5f8aaf6170a4c638db22854066e5ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Image Processing, Computer-Assisted
193 rdf:type schema:DefinedTerm
194 Nc7ec01e165c342a3a649e703c3ac28d5 schema:name dimensions_id
195 schema:value pub.1044252888
196 rdf:type schema:PropertyValue
197 Ne660c68e208346c8a6b69ab848dfdcd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Antigens, Neoplasm
199 rdf:type schema:DefinedTerm
200 Nf4252508fe3e4fb6b01ba06afbe90a62 schema:name doi
201 schema:value 10.1038/modpathol.2008.100
202 rdf:type schema:PropertyValue
203 Nf42d8c55cd1e4fbbbab9b67a7ff08b4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Fluorescent Antibody Technique, Indirect
205 rdf:type schema:DefinedTerm
206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
207 schema:name Medical and Health Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
210 schema:name Oncology and Carcinogenesis
211 rdf:type schema:DefinedTerm
212 sg:grant.2440220 http://pending.schema.org/fundedItem sg:pub.10.1038/modpathol.2008.100
213 rdf:type schema:MonetaryGrant
214 sg:grant.2478108 http://pending.schema.org/fundedItem sg:pub.10.1038/modpathol.2008.100
215 rdf:type schema:MonetaryGrant
216 sg:journal.1098208 schema:issn 0893-3952
217 1530-0285
218 schema:name Modern Pathology
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.010255222337.53 schema:affiliation grid-institutes:grid.240145.6
222 schema:familyName Lazar
223 schema:givenName Alexander
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255222337.53
225 rdf:type schema:Person
226 sg:person.011224425457.45 schema:affiliation grid-institutes:grid.47100.32
227 schema:familyName Rothberg
228 schema:givenName Bonnie E Gould
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011224425457.45
230 rdf:type schema:Person
231 sg:person.01165565067.84 schema:affiliation grid-institutes:grid.25879.31
232 schema:familyName Elder
233 schema:givenName David E
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165565067.84
235 rdf:type schema:Person
236 sg:person.012225214447.99 schema:affiliation grid-institutes:grid.62560.37
237 schema:familyName Murphy
238 schema:givenName George F
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012225214447.99
240 rdf:type schema:Person
241 sg:person.01224332540.84 schema:affiliation grid-institutes:grid.240145.6
242 schema:familyName Prieto
243 schema:givenName Victor
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224332540.84
245 rdf:type schema:Person
246 sg:person.01321753022.03 schema:affiliation grid-institutes:grid.47100.32
247 schema:familyName Moeder
248 schema:givenName Christopher B
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321753022.03
250 rdf:type schema:Person
251 sg:person.01336750727.45 schema:affiliation grid-institutes:grid.47100.32
252 schema:familyName Kluger
253 schema:givenName Harriet
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45
255 rdf:type schema:Person
256 sg:person.053601122.01 schema:affiliation grid-institutes:grid.47100.32
257 schema:familyName Halaban
258 schema:givenName Ruth
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053601122.01
260 rdf:type schema:Person
261 sg:person.0754207153.13 schema:affiliation grid-institutes:grid.47100.32
262 schema:familyName Rimm
263 schema:givenName David L
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
265 rdf:type schema:Person
266 sg:pub.10.1038/nbt0806-914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020293069
267 https://doi.org/10.1038/nbt0806-914
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
270 https://doi.org/10.1038/nm791
271 rdf:type schema:CreativeWork
272 grid-institutes:grid.240145.6 schema:alternateName Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
273 schema:name Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
274 rdf:type schema:Organization
275 grid-institutes:grid.25879.31 schema:alternateName Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
276 schema:name Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
277 rdf:type schema:Organization
278 grid-institutes:grid.32224.35 schema:alternateName Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
279 schema:name Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
280 rdf:type schema:Organization
281 grid-institutes:grid.47100.32 schema:alternateName Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
282 Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
283 Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
284 schema:name Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
285 Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
286 Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
287 rdf:type schema:Organization
288 grid-institutes:grid.62560.37 schema:alternateName Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
289 schema:name Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
290 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...