High-speed flow of interacting organic polaritons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02

AUTHORS

Giovanni Lerario, Dario Ballarini, Antonio Fieramosca, Alessandro Cannavale, Armando Genco, Federica Mangione, Salvatore Gambino, Lorenzo Dominici, Milena De Giorgi, Giuseppe Gigli, Daniele Sanvitto

ABSTRACT

The strong coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton polaritons, which have been shown to combine the best properties of their individual components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here, we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch surface wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the study of organic nonlinear light-matter fluxes and for a technologically promising route of the realization of dissipation-less on-chip polariton devices operating at room temperature. More... »

PAGES

e16212

References to SciGraph publications

  • 2006-02. Vacuum Rabi splitting in semiconductors in NATURE PHYSICS
  • 2006-09. Bose–Einstein condensation of exciton polaritons in NATURE
  • 2014-03. Nonlinear interactions in an organic polariton condensate in NATURE MATERIALS
  • 2010-01. Are optical transistors the logical next step? in NATURE PHOTONICS
  • 1998-09. Strong exciton–photon coupling in an organic semiconductor microcavity in NATURE
  • 2010-11. Spontaneous formation and optical manipulation of extended polariton condensates in NATURE PHYSICS
  • 2015-05. Focusing and Extraction of Light mediated by Bloch Surface Waves in SCIENTIFIC REPORTS
  • 2013-06. Microcavity polaritons: A new type of light switch in NATURE NANOTECHNOLOGY
  • 2012-01. Observation of bright polariton solitons in a semiconductor microcavity in NATURE PHOTONICS
  • 2010-07. Persistent currents and quantized vortices in a polariton superfluid in NATURE PHYSICS
  • 2015-11. Conductivity in organic semiconductors hybridized with the vacuum field in NATURE MATERIALS
  • 2009-11. Superfluidity of polaritons in semiconductor microcavities in NATURE PHYSICS
  • 2013-12. Ultrafast tristable spin memory of a coherent polariton gas in NATURE COMMUNICATIONS
  • 2009-01-15. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity in NATURE
  • 2008-09. Quantized vortices in an exciton–polariton condensate in NATURE PHYSICS
  • 2013-12. All-optical polariton transistor in NATURE COMMUNICATIONS
  • 2014-03. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer in NATURE MATERIALS
  • 2014-01. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens in LIGHT: SCIENCE & APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/lsa.2016.212

    DOI

    http://dx.doi.org/10.1038/lsa.2016.212

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083914129

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30167229


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto di Nanotecnologia", 
              "id": "https://www.grid.ac/institutes/grid.494551.8", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lerario", 
            "givenName": "Giovanni", 
            "id": "sg:person.012350760373.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350760373.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Nanotecnologia", 
              "id": "https://www.grid.ac/institutes/grid.494551.8", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ballarini", 
            "givenName": "Dario", 
            "id": "sg:person.01151435234.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Nanotecnologia", 
              "id": "https://www.grid.ac/institutes/grid.494551.8", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fieramosca", 
            "givenName": "Antonio", 
            "id": "sg:person.015500074141.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500074141.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salento", 
              "id": "https://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy", 
                "Dipartimento di matematica e fisica \u2018Ennio De Giorgi\u2019, Universit\u00e0 del Salento, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cannavale", 
            "givenName": "Alessandro", 
            "id": "sg:person.0751171102.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751171102.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salento", 
              "id": "https://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "Dipartimento di matematica e fisica \u2018Ennio De Giorgi\u2019, Universit\u00e0 del Salento, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Genco", 
            "givenName": "Armando", 
            "id": "sg:person.010164634061.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164634061.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Nanotecnologia", 
              "id": "https://www.grid.ac/institutes/grid.494551.8", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mangione", 
            "givenName": "Federica", 
            "id": "sg:person.016320506745.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016320506745.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salento", 
              "id": "https://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy", 
                "Dipartimento di matematica e fisica \u2018Ennio De Giorgi\u2019, Universit\u00e0 del Salento, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gambino", 
            "givenName": "Salvatore", 
            "id": "sg:person.01355377033.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355377033.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Nanotecnologia", 
              "id": "https://www.grid.ac/institutes/grid.494551.8", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dominici", 
            "givenName": "Lorenzo", 
            "id": "sg:person.0661206111.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661206111.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Nanotecnologia", 
              "id": "https://www.grid.ac/institutes/grid.494551.8", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Giorgi", 
            "givenName": "Milena", 
            "id": "sg:person.016204215120.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salento", 
              "id": "https://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy", 
                "Dipartimento di matematica e fisica \u2018Ennio De Giorgi\u2019, Universit\u00e0 del Salento, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gigli", 
            "givenName": "Giuseppe", 
            "id": "sg:person.01247265105.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Nanotecnologia", 
              "id": "https://www.grid.ac/institutes/grid.494551.8", 
              "name": [
                "CNR NANOTEC \u2013Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanvitto", 
            "givenName": "Daniele", 
            "id": "sg:person.0623153402.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys1364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001312614", 
              "https://doi.org/10.1038/nphys1364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001312614", 
              "https://doi.org/10.1038/nphys1364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3616144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001655121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.236601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004629661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.236601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004629661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005625240", 
              "https://doi.org/10.1038/nphys1750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006638538", 
              "https://doi.org/10.1038/nphys1668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2011.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006901770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007019293", 
              "https://doi.org/10.1038/nmat3874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007135410", 
              "https://doi.org/10.1038/nphoton.2009.240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007135410", 
              "https://doi.org/10.1038/nphoton.2009.240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007931333", 
              "https://doi.org/10.1038/nnano.2013.107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.266407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008689362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.266407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008689362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4936158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011273170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013511404", 
              "https://doi.org/10.1038/nphys1051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4773376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015422523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.196402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015891081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.196402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015891081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017957216", 
              "https://doi.org/10.1038/ncomms2734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.035325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019180072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.035325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019180072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/25692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019633472", 
              "https://doi.org/10.1038/25692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/25692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019633472", 
              "https://doi.org/10.1038/25692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020663836", 
              "https://doi.org/10.1038/nature05131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020663836", 
              "https://doi.org/10.1038/nature05131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020663836", 
              "https://doi.org/10.1038/nature05131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/lsa.2014.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020860263", 
              "https://doi.org/10.1038/lsa.2014.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.23.031640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021812360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021837761", 
              "https://doi.org/10.1038/ncomms3008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023480480", 
              "https://doi.org/10.1038/nature07640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.16.005453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031386931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032394311", 
              "https://doi.org/10.1038/srep05428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033525520", 
              "https://doi.org/10.1038/nmat3825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.041015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033585588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.041015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033585588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.201100756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034240432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.066401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034738902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.066401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034738902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040001128", 
              "https://doi.org/10.1038/nphys227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040001128", 
              "https://doi.org/10.1038/nphys227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040245125", 
              "https://doi.org/10.1038/nphoton.2011.267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.196403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046675071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.196403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046675071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046950229", 
              "https://doi.org/10.1038/nmat4392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adom.201400226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051356841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl100481q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl100481q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3571285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057976886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3684272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058000361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.10830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060590768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.10830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060590768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.085311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060605786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.085311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060605786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.033302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.033302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.075301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.075301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.3314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.3314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.4792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.4792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.1547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060820755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.1547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060820755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1074464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062446781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1140990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062455925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1177980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062460463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/110/40002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064226870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.21.023331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065205128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.39.002068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065235486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.39.006391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065236630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.2.000001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065247852"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02", 
        "datePublishedReg": "2017-02-01", 
        "description": "The strong coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton polaritons, which have been shown to combine the best properties of their individual components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here, we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch surface wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the study of organic nonlinear light-matter fluxes and for a technologically promising route of the realization of dissipation-less on-chip polariton devices operating at room temperature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/lsa.2016.212", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3795295", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048610", 
            "issn": [
              "2095-5545", 
              "2047-7538"
            ], 
            "name": "Light: Science & Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "High-speed flow of interacting organic polaritons", 
        "pagination": "e16212", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e17c1564b5afb18625402b0e51f6dae363f34c7100e0c66f2d35f6d38268e829"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30167229"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101610753"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/lsa.2016.212"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083914129"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/lsa.2016.212", 
          "https://app.dimensions.ai/details/publication/pub.1083914129"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000497.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/lsa/journal/v6/n2/full/lsa2016212a.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/lsa.2016.212'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/lsa.2016.212'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/lsa.2016.212'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/lsa.2016.212'


     

    This table displays all metadata directly associated to this object as RDF triples.

    316 TRIPLES      21 PREDICATES      80 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/lsa.2016.212 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Ndda0346420d8477fa44b7e0fea80a67c
    4 schema:citation sg:pub.10.1038/25692
    5 sg:pub.10.1038/lsa.2014.5
    6 sg:pub.10.1038/nature05131
    7 sg:pub.10.1038/nature07640
    8 sg:pub.10.1038/ncomms2734
    9 sg:pub.10.1038/ncomms3008
    10 sg:pub.10.1038/nmat3825
    11 sg:pub.10.1038/nmat3874
    12 sg:pub.10.1038/nmat4392
    13 sg:pub.10.1038/nnano.2013.107
    14 sg:pub.10.1038/nphoton.2009.240
    15 sg:pub.10.1038/nphoton.2011.267
    16 sg:pub.10.1038/nphys1051
    17 sg:pub.10.1038/nphys1364
    18 sg:pub.10.1038/nphys1668
    19 sg:pub.10.1038/nphys1750
    20 sg:pub.10.1038/nphys227
    21 sg:pub.10.1038/srep05428
    22 https://doi.org/10.1002/adfm.201100756
    23 https://doi.org/10.1002/adom.201400226
    24 https://doi.org/10.1016/j.physe.2011.04.003
    25 https://doi.org/10.1021/nl100481q
    26 https://doi.org/10.1063/1.3571285
    27 https://doi.org/10.1063/1.3616144
    28 https://doi.org/10.1063/1.3684272
    29 https://doi.org/10.1063/1.4773376
    30 https://doi.org/10.1063/1.4936158
    31 https://doi.org/10.1103/physrevb.59.10830
    32 https://doi.org/10.1103/physrevb.67.085311
    33 https://doi.org/10.1103/physrevb.79.035325
    34 https://doi.org/10.1103/physrevb.82.033302
    35 https://doi.org/10.1103/physrevb.82.075301
    36 https://doi.org/10.1103/physrevlett.108.066401
    37 https://doi.org/10.1103/physrevlett.109.266407
    38 https://doi.org/10.1103/physrevlett.110.236601
    39 https://doi.org/10.1103/physrevlett.114.196402
    40 https://doi.org/10.1103/physrevlett.114.196403
    41 https://doi.org/10.1103/physrevlett.69.3314
    42 https://doi.org/10.1103/physrevlett.77.4792
    43 https://doi.org/10.1103/physrevlett.84.1547
    44 https://doi.org/10.1103/physrevx.3.041015
    45 https://doi.org/10.1126/science.1074464
    46 https://doi.org/10.1126/science.1140990
    47 https://doi.org/10.1126/science.1177980
    48 https://doi.org/10.1209/0295-5075/110/40002
    49 https://doi.org/10.1364/oe.16.005453
    50 https://doi.org/10.1364/oe.21.023331
    51 https://doi.org/10.1364/oe.23.031640
    52 https://doi.org/10.1364/ol.39.002068
    53 https://doi.org/10.1364/ol.39.006391
    54 https://doi.org/10.1364/optica.2.000001
    55 schema:datePublished 2017-02
    56 schema:datePublishedReg 2017-02-01
    57 schema:description The strong coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton polaritons, which have been shown to combine the best properties of their individual components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here, we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch surface wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the study of organic nonlinear light-matter fluxes and for a technologically promising route of the realization of dissipation-less on-chip polariton devices operating at room temperature.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree true
    61 schema:isPartOf Nab43c1cbfcbd4209b0f1d867c4041337
    62 Nbc369373c475429397b9ebe709a52817
    63 sg:journal.1048610
    64 schema:name High-speed flow of interacting organic polaritons
    65 schema:pagination e16212
    66 schema:productId N01d9b13e4bc14f8ea3f9c13eb17599d7
    67 N54f3455515f745cb83cb009072022947
    68 N68f6ca5da5a5425684b7b6ae798b85bf
    69 N78740121ad2844dfbb2c9794860824b0
    70 Na1745e63164c4183a8db41abc0273ca9
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083914129
    72 https://doi.org/10.1038/lsa.2016.212
    73 schema:sdDatePublished 2019-04-10T16:39
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N996fe18c226947e6878c2d5afeba8eae
    76 schema:url http://www.nature.com/lsa/journal/v6/n2/full/lsa2016212a.html
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N01d9b13e4bc14f8ea3f9c13eb17599d7 schema:name pubmed_id
    81 schema:value 30167229
    82 rdf:type schema:PropertyValue
    83 N09d8bc3422b849c5972c6d8726615778 rdf:first sg:person.010164634061.52
    84 rdf:rest Nd3133a8aacb94f32bb60fcde62d5bcbb
    85 N34d0a584264c4a53ad86d584abd15fb4 rdf:first sg:person.0751171102.15
    86 rdf:rest N09d8bc3422b849c5972c6d8726615778
    87 N4495021219ca47d6a263e08ca45cfc12 rdf:first sg:person.0661206111.07
    88 rdf:rest Na8b66257c6f2423b980e1b2de4f66ea2
    89 N52dd57221d3f49eaa4820a462dff666c rdf:first sg:person.01247265105.59
    90 rdf:rest N9e110897e50c482ba8a14c7ee367470f
    91 N54f3455515f745cb83cb009072022947 schema:name readcube_id
    92 schema:value e17c1564b5afb18625402b0e51f6dae363f34c7100e0c66f2d35f6d38268e829
    93 rdf:type schema:PropertyValue
    94 N68f6ca5da5a5425684b7b6ae798b85bf schema:name doi
    95 schema:value 10.1038/lsa.2016.212
    96 rdf:type schema:PropertyValue
    97 N72338d296fa64d93b5edd91f2a09078f rdf:first sg:person.015500074141.06
    98 rdf:rest N34d0a584264c4a53ad86d584abd15fb4
    99 N78740121ad2844dfbb2c9794860824b0 schema:name nlm_unique_id
    100 schema:value 101610753
    101 rdf:type schema:PropertyValue
    102 N82d4c0e1bc724ca3897b68a95716851c rdf:first sg:person.01151435234.94
    103 rdf:rest N72338d296fa64d93b5edd91f2a09078f
    104 N8869e6152bc94fe1b7e58e8b002fae55 rdf:first sg:person.01355377033.37
    105 rdf:rest N4495021219ca47d6a263e08ca45cfc12
    106 N996fe18c226947e6878c2d5afeba8eae schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N9e110897e50c482ba8a14c7ee367470f rdf:first sg:person.0623153402.13
    109 rdf:rest rdf:nil
    110 Na1745e63164c4183a8db41abc0273ca9 schema:name dimensions_id
    111 schema:value pub.1083914129
    112 rdf:type schema:PropertyValue
    113 Na8b66257c6f2423b980e1b2de4f66ea2 rdf:first sg:person.016204215120.06
    114 rdf:rest N52dd57221d3f49eaa4820a462dff666c
    115 Nab43c1cbfcbd4209b0f1d867c4041337 schema:volumeNumber 6
    116 rdf:type schema:PublicationVolume
    117 Nbc369373c475429397b9ebe709a52817 schema:issueNumber 2
    118 rdf:type schema:PublicationIssue
    119 Nd3133a8aacb94f32bb60fcde62d5bcbb rdf:first sg:person.016320506745.49
    120 rdf:rest N8869e6152bc94fe1b7e58e8b002fae55
    121 Ndda0346420d8477fa44b7e0fea80a67c rdf:first sg:person.012350760373.31
    122 rdf:rest N82d4c0e1bc724ca3897b68a95716851c
    123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Physical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    128 rdf:type schema:DefinedTerm
    129 sg:grant.3795295 http://pending.schema.org/fundedItem sg:pub.10.1038/lsa.2016.212
    130 rdf:type schema:MonetaryGrant
    131 sg:journal.1048610 schema:issn 2047-7538
    132 2095-5545
    133 schema:name Light: Science & Applications
    134 rdf:type schema:Periodical
    135 sg:person.010164634061.52 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
    136 schema:familyName Genco
    137 schema:givenName Armando
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164634061.52
    139 rdf:type schema:Person
    140 sg:person.01151435234.94 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
    141 schema:familyName Ballarini
    142 schema:givenName Dario
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94
    144 rdf:type schema:Person
    145 sg:person.012350760373.31 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
    146 schema:familyName Lerario
    147 schema:givenName Giovanni
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350760373.31
    149 rdf:type schema:Person
    150 sg:person.01247265105.59 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
    151 schema:familyName Gigli
    152 schema:givenName Giuseppe
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59
    154 rdf:type schema:Person
    155 sg:person.01355377033.37 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
    156 schema:familyName Gambino
    157 schema:givenName Salvatore
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355377033.37
    159 rdf:type schema:Person
    160 sg:person.015500074141.06 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
    161 schema:familyName Fieramosca
    162 schema:givenName Antonio
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500074141.06
    164 rdf:type schema:Person
    165 sg:person.016204215120.06 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
    166 schema:familyName De Giorgi
    167 schema:givenName Milena
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06
    169 rdf:type schema:Person
    170 sg:person.016320506745.49 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
    171 schema:familyName Mangione
    172 schema:givenName Federica
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016320506745.49
    174 rdf:type schema:Person
    175 sg:person.0623153402.13 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
    176 schema:familyName Sanvitto
    177 schema:givenName Daniele
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13
    179 rdf:type schema:Person
    180 sg:person.0661206111.07 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
    181 schema:familyName Dominici
    182 schema:givenName Lorenzo
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661206111.07
    184 rdf:type schema:Person
    185 sg:person.0751171102.15 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
    186 schema:familyName Cannavale
    187 schema:givenName Alessandro
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751171102.15
    189 rdf:type schema:Person
    190 sg:pub.10.1038/25692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019633472
    191 https://doi.org/10.1038/25692
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/lsa.2014.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020860263
    194 https://doi.org/10.1038/lsa.2014.5
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature05131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020663836
    197 https://doi.org/10.1038/nature05131
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature07640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023480480
    200 https://doi.org/10.1038/nature07640
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ncomms2734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017957216
    203 https://doi.org/10.1038/ncomms2734
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ncomms3008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021837761
    206 https://doi.org/10.1038/ncomms3008
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nmat3825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033525520
    209 https://doi.org/10.1038/nmat3825
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nmat3874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007019293
    212 https://doi.org/10.1038/nmat3874
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nmat4392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046950229
    215 https://doi.org/10.1038/nmat4392
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nnano.2013.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007931333
    218 https://doi.org/10.1038/nnano.2013.107
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nphoton.2009.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007135410
    221 https://doi.org/10.1038/nphoton.2009.240
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nphoton.2011.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040245125
    224 https://doi.org/10.1038/nphoton.2011.267
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nphys1051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013511404
    227 https://doi.org/10.1038/nphys1051
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nphys1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312614
    230 https://doi.org/10.1038/nphys1364
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nphys1668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006638538
    233 https://doi.org/10.1038/nphys1668
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nphys1750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005625240
    236 https://doi.org/10.1038/nphys1750
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nphys227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040001128
    239 https://doi.org/10.1038/nphys227
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/srep05428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032394311
    242 https://doi.org/10.1038/srep05428
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1002/adfm.201100756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034240432
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1002/adom.201400226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051356841
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/j.physe.2011.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006901770
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1021/nl100481q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217844
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1063/1.3571285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057976886
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1063/1.3616144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001655121
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1063/1.3684272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058000361
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1063/1.4773376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015422523
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1063/1.4936158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011273170
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1103/physrevb.59.10830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590768
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1103/physrevb.67.085311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605786
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1103/physrevb.79.035325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019180072
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1103/physrevb.82.033302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633151
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1103/physrevb.82.075301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633431
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1103/physrevlett.108.066401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034738902
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1103/physrevlett.109.266407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008689362
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1103/physrevlett.110.236601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004629661
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1103/physrevlett.114.196402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015891081
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1103/physrevlett.114.196403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046675071
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1103/physrevlett.69.3314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805773
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1103/physrevlett.77.4792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814394
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1103/physrevlett.84.1547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820755
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1103/physrevx.3.041015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033585588
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1126/science.1074464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446781
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1126/science.1140990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455925
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1126/science.1177980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460463
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1209/0295-5075/110/40002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064226870
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1364/oe.16.005453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031386931
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1364/oe.21.023331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065205128
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1364/oe.23.031640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812360
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1364/ol.39.002068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065235486
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1364/ol.39.006391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065236630
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1364/optica.2.000001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065247852
    309 rdf:type schema:CreativeWork
    310 https://www.grid.ac/institutes/grid.494551.8 schema:alternateName Istituto di Nanotecnologia
    311 schema:name CNR NANOTEC –Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
    312 rdf:type schema:Organization
    313 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
    314 schema:name CNR NANOTEC –Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
    315 Dipartimento di matematica e fisica ‘Ennio De Giorgi’, Università del Salento, 73100 Lecce, Italy
    316 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...