Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05

AUTHORS

Robert Kammel, Roland Ackermann, Jens Thomas, Jörg Götte, Stefan Skupin, Andreas Tünnermann, Stefan Nolte

ABSTRACT

In recent years, femtosecond (fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions. However, when high pulse energies or low numerical apertures are required, nonlinear side effects such as self-focusing, filamentation or white light generation can decrease the modification quality. In this paper, we apply simultaneous spatial and temporal focusing (SSTF) to overcome these limitations. The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane, thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects. Thus, we investigate the optical breakdown within a water cell by pump-probe shadowgraphy, comparing conventional focusing and SSTF under equivalent focusing conditions. The plasma formation is well confined for low pulse energies <2 µJ, but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing, thereby decreasing the modification quality. In contrast, plasma induced by SSTF stays well confined to the focal plane, even for high pulse energies up to 8 µJ, preventing extended filaments, side branches or break-up of the disruptions. Furthermore, while conventional focusing leads to broadband supercontinuum generation, only marginal spectral broadening is observed using SSTF. These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes. Therefore, SSTF appears to be a powerful tool to control the processing of transparent materials, e.g., for precise ophthalmic fs-surgery. More... »

PAGES

e169

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/lsa.2014.50

DOI

http://dx.doi.org/10.1038/lsa.2014.50

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053716256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, 07743 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kammel", 
        "givenName": "Robert", 
        "id": "sg:person.01015340245.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015340245.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, 07743 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ackermann", 
        "givenName": "Roland", 
        "id": "sg:person.016535152633.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016535152633.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, 07743 Jena, Germany", 
            "Department of Physics, Colorado School of Mines, Golden, CO 80401, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Jens", 
        "id": "sg:person.01122365467.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122365467.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6tte", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.012140153433.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140153433.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Lasers Intenses et Applications", 
          "id": "https://www.grid.ac/institutes/grid.462737.3", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany", 
            "Institute of Condensed Matter Theory and Solid State Optics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, 07743 Jena, Germany", 
            "Universit\u00e9 de Bordeaux \u2013 CNRS \u2013 CEA, Centre Lasers Intenses et Applications, UMR 5107, 33405 Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skupin", 
        "givenName": "Stefan", 
        "id": "sg:person.0576624010.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576624010.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, 07743 Jena, Germany", 
            "Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcnnermann", 
        "givenName": "Andreas", 
        "id": "sg:person.0577721111.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, 07743 Jena, Germany", 
            "Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nolte", 
        "givenName": "Stefan", 
        "id": "sg:person.0767272372.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272372.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.visres.2009.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001184787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lsm.22179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003021175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/iio.0b013e31820f8844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004618677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/iio.0b013e31820f8844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004618677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-005-2036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005375496", 
          "https://doi.org/10.1007/s00340-005-2036-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-005-2036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005375496", 
          "https://doi.org/10.1007/s00340-005-2036-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-005-2036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005375496", 
          "https://doi.org/10.1007/s00340-005-2036-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/43/16/163001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007858274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajo.2008.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013098741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-0104(00)00170-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014800397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2006169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015668733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2007.05.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016653656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2012.06.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016891779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/boe.4.000220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020170414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/boe.2.000080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026120213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/boe.2.000080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026120213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(01)01698-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027203920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027337805", 
          "https://doi.org/10.1038/nphoton.2008.47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1442-9071.2012.02851.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027951807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(02)00740-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029396750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(02)00740-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029396750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-34727-1_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031100857", 
          "https://doi.org/10.1007/978-0-387-34727-1_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-34727-1_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031100857", 
          "https://doi.org/10.1007/978-0-387-34727-1_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.001468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034774538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-002-1087-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037326825", 
          "https://doi.org/10.1007/s00340-002-1087-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00417-011-1772-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037578733", 
          "https://doi.org/10.1007/s00417-011-1772-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.012243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039536009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrs.2012.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043205666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/70/10/r03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043938907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.253901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044248791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.253901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044248791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2006.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045355394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.002153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047359216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003400200825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049524850", 
          "https://doi.org/10.1007/s003400200825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01567637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049853790", 
          "https://doi.org/10.1007/bf01567637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.018086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052631786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.018086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052631786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.1749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.1749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.038102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.038102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.1559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.1559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.538774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061148672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.552252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061148729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/boe.4.000831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065137747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.16.000637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065169250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.10.000196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065181815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.015808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065191266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.015808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065191266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.024673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065195096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.024673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065195096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.014244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065200585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.005677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065202995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.000320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.000086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.001106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065228442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2006.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3928/1081597x-20121116-01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071727440"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "In recent years, femtosecond (fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions. However, when high pulse energies or low numerical apertures are required, nonlinear side effects such as self-focusing, filamentation or white light generation can decrease the modification quality. In this paper, we apply simultaneous spatial and temporal focusing (SSTF) to overcome these limitations. The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane, thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects. Thus, we investigate the optical breakdown within a water cell by pump-probe shadowgraphy, comparing conventional focusing and SSTF under equivalent focusing conditions. The plasma formation is well confined for low pulse energies <2 \u00b5J, but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing, thereby decreasing the modification quality. In contrast, plasma induced by SSTF stays well confined to the focal plane, even for high pulse energies up to 8 \u00b5J, preventing extended filaments, side branches or break-up of the disruptions. Furthermore, while conventional focusing leads to broadband supercontinuum generation, only marginal spectral broadening is observed using SSTF. These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes. Therefore, SSTF appears to be a powerful tool to control the processing of transparent materials, e.g., for precise ophthalmic fs-surgery.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/lsa.2014.50", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1048610", 
        "issn": [
          "2095-5545", 
          "2047-7538"
        ], 
        "name": "Light: Science & Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing", 
    "pagination": "e169", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ffdba5b39fd3e1c74a442a004767212160addd16bf173daacaab2410c4024b52"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/lsa.2014.50"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053716256"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/lsa.2014.50", 
      "https://app.dimensions.ai/details/publication/pub.1053716256"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/lsa201450"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/lsa.2014.50'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/lsa.2014.50'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/lsa.2014.50'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/lsa.2014.50'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/lsa.2014.50 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nd2a45fc346d24090bc18dfed8fcae2af
4 schema:citation sg:pub.10.1007/978-0-387-34727-1_12
5 sg:pub.10.1007/bf01567637
6 sg:pub.10.1007/s00340-002-1087-1
7 sg:pub.10.1007/s00340-005-2036-6
8 sg:pub.10.1007/s003400200825
9 sg:pub.10.1007/s00417-011-1772-z
10 sg:pub.10.1038/nphoton.2008.47
11 https://doi.org/10.1002/lsm.22179
12 https://doi.org/10.1016/j.ajo.2008.08.026
13 https://doi.org/10.1016/j.jcrs.2012.07.023
14 https://doi.org/10.1016/j.optcom.2007.05.071
15 https://doi.org/10.1016/j.optlastec.2012.06.037
16 https://doi.org/10.1016/j.physrep.2006.12.005
17 https://doi.org/10.1016/j.visres.2009.04.028
18 https://doi.org/10.1016/s0030-4018(01)01698-4
19 https://doi.org/10.1016/s0167-2789(02)00740-6
20 https://doi.org/10.1016/s0301-0104(00)00170-1
21 https://doi.org/10.1088/0034-4885/70/10/r03
22 https://doi.org/10.1088/0953-4075/43/16/163001
23 https://doi.org/10.1097/iio.0b013e31820f8844
24 https://doi.org/10.1103/physreva.74.043813
25 https://doi.org/10.1103/physrevb.53.1749
26 https://doi.org/10.1103/physrevlett.100.038102
27 https://doi.org/10.1103/physrevlett.58.1559
28 https://doi.org/10.1103/physrevlett.92.253901
29 https://doi.org/10.1109/3.538774
30 https://doi.org/10.1109/3.552252
31 https://doi.org/10.1111/j.1442-9071.2012.02851.x
32 https://doi.org/10.1117/12.2006169
33 https://doi.org/10.1364/boe.2.000080
34 https://doi.org/10.1364/boe.4.000220
35 https://doi.org/10.1364/boe.4.000831
36 https://doi.org/10.1364/josab.16.000637
37 https://doi.org/10.1364/oe.10.000196
38 https://doi.org/10.1364/oe.14.012243
39 https://doi.org/10.1364/oe.17.015808
40 https://doi.org/10.1364/oe.18.018086
41 https://doi.org/10.1364/oe.18.024673
42 https://doi.org/10.1364/oe.20.014244
43 https://doi.org/10.1364/oe.21.005677
44 https://doi.org/10.1364/ol.30.000320
45 https://doi.org/10.1364/ol.33.000086
46 https://doi.org/10.1364/ol.35.001106
47 https://doi.org/10.1364/opex.13.001468
48 https://doi.org/10.1364/opex.13.002153
49 https://doi.org/10.1557/mrs2006.159
50 https://doi.org/10.3928/1081597x-20121116-01
51 schema:datePublished 2014-05
52 schema:datePublishedReg 2014-05-01
53 schema:description In recent years, femtosecond (fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions. However, when high pulse energies or low numerical apertures are required, nonlinear side effects such as self-focusing, filamentation or white light generation can decrease the modification quality. In this paper, we apply simultaneous spatial and temporal focusing (SSTF) to overcome these limitations. The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane, thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects. Thus, we investigate the optical breakdown within a water cell by pump-probe shadowgraphy, comparing conventional focusing and SSTF under equivalent focusing conditions. The plasma formation is well confined for low pulse energies <2 µJ, but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing, thereby decreasing the modification quality. In contrast, plasma induced by SSTF stays well confined to the focal plane, even for high pulse energies up to 8 µJ, preventing extended filaments, side branches or break-up of the disruptions. Furthermore, while conventional focusing leads to broadband supercontinuum generation, only marginal spectral broadening is observed using SSTF. These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes. Therefore, SSTF appears to be a powerful tool to control the processing of transparent materials, e.g., for precise ophthalmic fs-surgery.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N42fb0c5165e94b74805b3c705f4d9fda
58 Nb424d8cd4dc84345a59a87f436ce8b36
59 sg:journal.1048610
60 schema:name Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing
61 schema:pagination e169
62 schema:productId N38be8cbd8d6b494e9502070a3a16d9db
63 N78435ca0e6854471992ce5c7aebc6ae6
64 Na744d8aa80834992ac904af1deb45b73
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053716256
66 https://doi.org/10.1038/lsa.2014.50
67 schema:sdDatePublished 2019-04-10T19:46
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nb29ff41babfd4c778fa2ed6ac2990121
70 schema:url https://www.nature.com/articles/lsa201450
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N38be8cbd8d6b494e9502070a3a16d9db schema:name readcube_id
75 schema:value ffdba5b39fd3e1c74a442a004767212160addd16bf173daacaab2410c4024b52
76 rdf:type schema:PropertyValue
77 N3e2e1f65925b4d5fa4bf1e7b2fe4cb7a rdf:first sg:person.0767272372.44
78 rdf:rest rdf:nil
79 N42fb0c5165e94b74805b3c705f4d9fda schema:issueNumber 5
80 rdf:type schema:PublicationIssue
81 N59b71bf3bed24a4d91fd679bed4c9b0d rdf:first sg:person.0576624010.32
82 rdf:rest Na4ada6d1a8914873b390081df1532bd4
83 N78435ca0e6854471992ce5c7aebc6ae6 schema:name dimensions_id
84 schema:value pub.1053716256
85 rdf:type schema:PropertyValue
86 N7f96aa4c6b0f4bc4a198b6b0be5e84a4 rdf:first sg:person.01122365467.41
87 rdf:rest Nab57fe4ade4949158d81f4a67e5c616e
88 Na4ada6d1a8914873b390081df1532bd4 rdf:first sg:person.0577721111.73
89 rdf:rest N3e2e1f65925b4d5fa4bf1e7b2fe4cb7a
90 Na744d8aa80834992ac904af1deb45b73 schema:name doi
91 schema:value 10.1038/lsa.2014.50
92 rdf:type schema:PropertyValue
93 Nab57fe4ade4949158d81f4a67e5c616e rdf:first sg:person.012140153433.35
94 rdf:rest N59b71bf3bed24a4d91fd679bed4c9b0d
95 Nb29ff41babfd4c778fa2ed6ac2990121 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nb424d8cd4dc84345a59a87f436ce8b36 schema:volumeNumber 3
98 rdf:type schema:PublicationVolume
99 Nd2a45fc346d24090bc18dfed8fcae2af rdf:first sg:person.01015340245.62
100 rdf:rest Neae74c5b16714ba3953730670808b34c
101 Neae74c5b16714ba3953730670808b34c rdf:first sg:person.016535152633.51
102 rdf:rest N7f96aa4c6b0f4bc4a198b6b0be5e84a4
103 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
107 schema:name Optical Physics
108 rdf:type schema:DefinedTerm
109 sg:journal.1048610 schema:issn 2047-7538
110 2095-5545
111 schema:name Light: Science & Applications
112 rdf:type schema:Periodical
113 sg:person.01015340245.62 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
114 schema:familyName Kammel
115 schema:givenName Robert
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015340245.62
117 rdf:type schema:Person
118 sg:person.01122365467.41 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
119 schema:familyName Thomas
120 schema:givenName Jens
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122365467.41
122 rdf:type schema:Person
123 sg:person.012140153433.35 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
124 schema:familyName Götte
125 schema:givenName Jörg
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140153433.35
127 rdf:type schema:Person
128 sg:person.016535152633.51 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
129 schema:familyName Ackermann
130 schema:givenName Roland
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016535152633.51
132 rdf:type schema:Person
133 sg:person.0576624010.32 schema:affiliation https://www.grid.ac/institutes/grid.462737.3
134 schema:familyName Skupin
135 schema:givenName Stefan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576624010.32
137 rdf:type schema:Person
138 sg:person.0577721111.73 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
139 schema:familyName Tünnermann
140 schema:givenName Andreas
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73
142 rdf:type schema:Person
143 sg:person.0767272372.44 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
144 schema:familyName Nolte
145 schema:givenName Stefan
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272372.44
147 rdf:type schema:Person
148 sg:pub.10.1007/978-0-387-34727-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031100857
149 https://doi.org/10.1007/978-0-387-34727-1_12
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf01567637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049853790
152 https://doi.org/10.1007/bf01567637
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00340-002-1087-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037326825
155 https://doi.org/10.1007/s00340-002-1087-1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00340-005-2036-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005375496
158 https://doi.org/10.1007/s00340-005-2036-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s003400200825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049524850
161 https://doi.org/10.1007/s003400200825
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00417-011-1772-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037578733
164 https://doi.org/10.1007/s00417-011-1772-z
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphoton.2008.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027337805
167 https://doi.org/10.1038/nphoton.2008.47
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/lsm.22179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003021175
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ajo.2008.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013098741
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jcrs.2012.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043205666
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.optcom.2007.05.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016653656
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.optlastec.2012.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016891779
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physrep.2006.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045355394
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.visres.2009.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001184787
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0030-4018(01)01698-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027203920
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0167-2789(02)00740-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029396750
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0301-0104(00)00170-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014800397
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1088/0034-4885/70/10/r03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043938907
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/0953-4075/43/16/163001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007858274
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/iio.0b013e31820f8844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004618677
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physreva.74.043813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060502670
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.53.1749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060579955
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.100.038102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752763
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.58.1559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794805
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.92.253901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044248791
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/3.538774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061148672
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/3.552252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061148729
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1442-9071.2012.02851.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027951807
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1117/12.2006169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015668733
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1364/boe.2.000080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026120213
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1364/boe.4.000220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020170414
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1364/boe.4.000831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065137747
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1364/josab.16.000637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065169250
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1364/oe.10.000196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065181815
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1364/oe.14.012243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039536009
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1364/oe.17.015808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065191266
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1364/oe.18.018086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052631786
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1364/oe.18.024673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065195096
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1364/oe.20.014244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065200585
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1364/oe.21.005677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065202995
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1364/ol.30.000320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222514
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1364/ol.33.000086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225687
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1364/ol.35.001106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065228442
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1364/opex.13.001468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034774538
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1364/opex.13.002153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047359216
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1557/mrs2006.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969034
246 rdf:type schema:CreativeWork
247 https://doi.org/10.3928/1081597x-20121116-01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071727440
248 rdf:type schema:CreativeWork
249 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
250 schema:name Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
251 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.418007.a schema:alternateName Fraunhofer Institute for Applied Optics and Precision Engineering
254 schema:name Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
255 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
258 schema:name Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.462737.3 schema:alternateName Centre Lasers Intenses et Applications
261 schema:name Institute of Condensed Matter Theory and Solid State Optics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
262 Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
263 Université de Bordeaux – CNRS – CEA, Centre Lasers Intenses et Applications, UMR 5107, 33405 Talence, France
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
266 schema:name Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...