Application of array CGH on archival formalin-fixed paraffin-embedded tissues including small numbers of microdissected cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-09

AUTHORS

Nicola A Johnson, Rifat A Hamoudi, Koichi Ichimura, Lu Liu, Danita M Pearson, V Peter Collins, Ming-Qing Du

ABSTRACT

Array-based comparative genomic hybridisation (aCGH) has diverse applications in cancer gene discovery and translational research. Currently, aCGH is performed primarily using high molecular weight DNA samples and its application to formalin-fixed and paraffin-embedded (FFPE) tissues remains to be established. To explore how aCGH can be reliably applied to archival FFPE tissues and whether it is possible to apply aCGH to small numbers of cells microdissected from FFPE tissue sections, we have systematically performed aCGH on 15 pairs of matched frozen and FFPE astrocytic tumour tissues using a well-established in-house human 1 Mb BAC/PAC genomic array. By spiking tumour DNA with normal DNA, we demonstrated that at least 70% of tumour DNA was required for reliable aCGH analysis. Using aCGH data from frozen tissue as a reference, it was found that only FFPE astrocytic tumour tissues that supported PCR amplification of >300 bp DNA fragment provided high quality, reproducible aCGH data. The presence of necrosis in a tissue specimen had an adverse effect on the quality of aCGH, while fixation in formalin for up to 96 h of fresh tissue did not appear to affect the quality of the result. As little as 10-20 ng DNA from frozen or FFPE tissues could be readily used for aCGH analysis following whole genome amplification (WGA). Furthermore, as few as 2000 microdissected cells from haematoxylin-stained slides of archival FFPE tissues could be successfully used for aCGH investigations when WGA was used. By careful assessment of DNA integrity and review of histology, to exclude necrosis and select specimens with a high proportion of tumour cells, it is feasible to preselect archival FFPE tissues adequate for aCGH analysis. With the help of microdissection and WGA, it is also possible to apply aCGH to histologically defined lesions, such as carcinoma in situ. More... »

PAGES

968

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/labinvest.3700441

DOI

http://dx.doi.org/10.1038/labinvest.3700441

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042078744

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16751780


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Astrocytoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Specimen Banks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Formaldehyde", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microdissection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paraffin Embedding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Preservation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Nicola A", 
        "id": "sg:person.0703205445.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703205445.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamoudi", 
        "givenName": "Rifat A", 
        "id": "sg:person.01311277251.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311277251.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ichimura", 
        "givenName": "Koichi", 
        "id": "sg:person.013346033202.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013346033202.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lu", 
        "id": "sg:person.01010772013.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010772013.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pearson", 
        "givenName": "Danita M", 
        "id": "sg:person.0757053247.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757053247.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "V Peter", 
        "id": "sg:person.0600656007.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600656007.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Ming-Qing", 
        "id": "sg:person.01147713317.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147713317.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/gcc.10155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000686863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001695810", 
          "https://doi.org/10.1038/ng1307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001695810", 
          "https://doi.org/10.1038/ng1307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019606-200406000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003938415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019606-200406000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003938415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019606-200406000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003938415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gcc.20181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005715191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019606-200403000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007714550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019606-200403000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007714550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005072-200606000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016350764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-04-1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016954304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2005.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018203517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2005.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018203517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026806118", 
          "https://doi.org/10.1038/sj.onc.1209156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026806118", 
          "https://doi.org/10.1038/sj.onc.1209156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1525-1578(10)60543-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027316798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2403202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027716225", 
          "https://doi.org/10.1038/sj.leu.2403202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2403202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027716225", 
          "https://doi.org/10.1038/sj.leu.2403202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(99)01523-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035390738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:chro.0000009325.69828.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041947574", 
          "https://doi.org/10.1023/b:chro.0000009325.69828.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2005-07-2950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042127866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077003895", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424628", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082961046", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-09", 
    "datePublishedReg": "2006-09-01", 
    "description": "Array-based comparative genomic hybridisation (aCGH) has diverse applications in cancer gene discovery and translational research. Currently, aCGH is performed primarily using high molecular weight DNA samples and its application to formalin-fixed and paraffin-embedded (FFPE) tissues remains to be established. To explore how aCGH can be reliably applied to archival FFPE tissues and whether it is possible to apply aCGH to small numbers of cells microdissected from FFPE tissue sections, we have systematically performed aCGH on 15 pairs of matched frozen and FFPE astrocytic tumour tissues using a well-established in-house human 1 Mb BAC/PAC genomic array. By spiking tumour DNA with normal DNA, we demonstrated that at least 70% of tumour DNA was required for reliable aCGH analysis. Using aCGH data from frozen tissue as a reference, it was found that only FFPE astrocytic tumour tissues that supported PCR amplification of >300 bp DNA fragment provided high quality, reproducible aCGH data. The presence of necrosis in a tissue specimen had an adverse effect on the quality of aCGH, while fixation in formalin for up to 96 h of fresh tissue did not appear to affect the quality of the result. As little as 10-20 ng DNA from frozen or FFPE tissues could be readily used for aCGH analysis following whole genome amplification (WGA). Furthermore, as few as 2000 microdissected cells from haematoxylin-stained slides of archival FFPE tissues could be successfully used for aCGH investigations when WGA was used. By careful assessment of DNA integrity and review of histology, to exclude necrosis and select specimens with a high proportion of tumour cells, it is feasible to preselect archival FFPE tissues adequate for aCGH analysis. With the help of microdissection and WGA, it is also possible to apply aCGH to histologically defined lesions, such as carcinoma in situ.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/labinvest.3700441", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5138787", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017964", 
        "issn": [
          "0023-6837", 
          "1530-0307"
        ], 
        "name": "Laboratory Investigation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Application of array CGH on archival formalin-fixed paraffin-embedded tissues including small numbers of microdissected cells", 
    "pagination": "968", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c870fe4939ccf38504eaa1494afcc1623b1d083324b9ade4a3dfe43fb6e04b2d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16751780"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0376617"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/labinvest.3700441"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042078744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/labinvest.3700441", 
      "https://app.dimensions.ai/details/publication/pub.1042078744"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/3700441"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/labinvest.3700441'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/labinvest.3700441'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/labinvest.3700441'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/labinvest.3700441'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      59 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/labinvest.3700441 schema:about N17e06b148a924cf7898596ba3a0cdba2
2 N5efc699462eb438eb0518ff7c2950ddf
3 N5fa50e332f00495f9cfe3c4206fd4d0f
4 N6abe40dd2b5a40678bc88ebc02310db9
5 N818edebdbd964b55a5669a641e724b32
6 N8c4a8d425d5b4504afd2020d6b0e957b
7 N971c8ee80289453eaeccc08b4739d293
8 N99bfe0462b3443e39f9f8ab7c506e84b
9 N9ea6ba4b890142ea9ac6e9808d2af0b1
10 Nba084f9d3dd14dc29fa3b09185826f09
11 Nc2a41d5575174d47ab3f95cd2fbe3c66
12 Nc4258340a0654f0a91ffc594de651ca2
13 Ne36c45c20b564a7fa0f5fd2c3efa5d85
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author Nca2493eab43744e58b521a7df8b4a923
17 schema:citation sg:pub.10.1023/b:chro.0000009325.69828.83
18 sg:pub.10.1038/ng1307
19 sg:pub.10.1038/sj.leu.2403202
20 sg:pub.10.1038/sj.onc.1209156
21 https://app.dimensions.ai/details/publication/pub.1077003895
22 https://app.dimensions.ai/details/publication/pub.1082424628
23 https://app.dimensions.ai/details/publication/pub.1082961046
24 https://doi.org/10.1002/gcc.10155
25 https://doi.org/10.1002/gcc.20181
26 https://doi.org/10.1016/j.ygeno.2005.09.019
27 https://doi.org/10.1016/s0014-5793(99)01523-9
28 https://doi.org/10.1016/s1525-1578(10)60543-0
29 https://doi.org/10.1097/00005072-200606000-00003
30 https://doi.org/10.1097/00019606-200403000-00004
31 https://doi.org/10.1097/00019606-200406000-00007
32 https://doi.org/10.1158/0008-5472.can-04-1992
33 https://doi.org/10.1182/blood-2005-07-2950
34 schema:datePublished 2006-09
35 schema:datePublishedReg 2006-09-01
36 schema:description Array-based comparative genomic hybridisation (aCGH) has diverse applications in cancer gene discovery and translational research. Currently, aCGH is performed primarily using high molecular weight DNA samples and its application to formalin-fixed and paraffin-embedded (FFPE) tissues remains to be established. To explore how aCGH can be reliably applied to archival FFPE tissues and whether it is possible to apply aCGH to small numbers of cells microdissected from FFPE tissue sections, we have systematically performed aCGH on 15 pairs of matched frozen and FFPE astrocytic tumour tissues using a well-established in-house human 1 Mb BAC/PAC genomic array. By spiking tumour DNA with normal DNA, we demonstrated that at least 70% of tumour DNA was required for reliable aCGH analysis. Using aCGH data from frozen tissue as a reference, it was found that only FFPE astrocytic tumour tissues that supported PCR amplification of >300 bp DNA fragment provided high quality, reproducible aCGH data. The presence of necrosis in a tissue specimen had an adverse effect on the quality of aCGH, while fixation in formalin for up to 96 h of fresh tissue did not appear to affect the quality of the result. As little as 10-20 ng DNA from frozen or FFPE tissues could be readily used for aCGH analysis following whole genome amplification (WGA). Furthermore, as few as 2000 microdissected cells from haematoxylin-stained slides of archival FFPE tissues could be successfully used for aCGH investigations when WGA was used. By careful assessment of DNA integrity and review of histology, to exclude necrosis and select specimens with a high proportion of tumour cells, it is feasible to preselect archival FFPE tissues adequate for aCGH analysis. With the help of microdissection and WGA, it is also possible to apply aCGH to histologically defined lesions, such as carcinoma in situ.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N6934334f950747bb91a2f461923cdf04
41 N85bc7b006a344438801b0510ad94f7f7
42 sg:journal.1017964
43 schema:name Application of array CGH on archival formalin-fixed paraffin-embedded tissues including small numbers of microdissected cells
44 schema:pagination 968
45 schema:productId N13e9805265bc412ea8e4f5e56adf81b2
46 N2ab51a2903aa4ad69a5cc2a42670315d
47 N77218d9d6c994e07a1d3d1fc3bb0c0b4
48 Nc783885bbfe0431594966a932e4309d3
49 Nd1f8e46dd7574bcea9b8213462d27b68
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042078744
51 https://doi.org/10.1038/labinvest.3700441
52 schema:sdDatePublished 2019-04-11T13:18
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N89bbc0728c0443f0b31f6ac5b7efc88a
55 schema:url https://www.nature.com/articles/3700441
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N13e9805265bc412ea8e4f5e56adf81b2 schema:name doi
60 schema:value 10.1038/labinvest.3700441
61 rdf:type schema:PropertyValue
62 N1588cbd2050f4958830763902437a2fa rdf:first sg:person.01147713317.01
63 rdf:rest rdf:nil
64 N17e06b148a924cf7898596ba3a0cdba2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Astrocytoma
66 rdf:type schema:DefinedTerm
67 N21f667324c4047509cb6a690cbae80fa rdf:first sg:person.01311277251.50
68 rdf:rest Ne58e0746f6464229b87905ea049fd34d
69 N2ab51a2903aa4ad69a5cc2a42670315d schema:name dimensions_id
70 schema:value pub.1042078744
71 rdf:type schema:PropertyValue
72 N3ae39f1b2a6d4bb2a027624c2f0bf50b rdf:first sg:person.01010772013.31
73 rdf:rest N406521bb256546a2b77653ecd2ca95f1
74 N406521bb256546a2b77653ecd2ca95f1 rdf:first sg:person.0757053247.16
75 rdf:rest Na45e269d28a040f59625d20fbd91cdbe
76 N5efc699462eb438eb0518ff7c2950ddf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Biological Specimen Banks
78 rdf:type schema:DefinedTerm
79 N5fa50e332f00495f9cfe3c4206fd4d0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Biomarkers, Tumor
81 rdf:type schema:DefinedTerm
82 N6934334f950747bb91a2f461923cdf04 schema:volumeNumber 86
83 rdf:type schema:PublicationVolume
84 N6abe40dd2b5a40678bc88ebc02310db9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Microdissection
86 rdf:type schema:DefinedTerm
87 N77218d9d6c994e07a1d3d1fc3bb0c0b4 schema:name nlm_unique_id
88 schema:value 0376617
89 rdf:type schema:PropertyValue
90 N818edebdbd964b55a5669a641e724b32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Necrosis
92 rdf:type schema:DefinedTerm
93 N85bc7b006a344438801b0510ad94f7f7 schema:issueNumber 9
94 rdf:type schema:PublicationIssue
95 N89bbc0728c0443f0b31f6ac5b7efc88a schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N8c4a8d425d5b4504afd2020d6b0e957b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Tissue Preservation
99 rdf:type schema:DefinedTerm
100 N971c8ee80289453eaeccc08b4739d293 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name DNA, Neoplasm
102 rdf:type schema:DefinedTerm
103 N99bfe0462b3443e39f9f8ab7c506e84b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Oligonucleotide Array Sequence Analysis
105 rdf:type schema:DefinedTerm
106 N9ea6ba4b890142ea9ac6e9808d2af0b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Paraffin Embedding
108 rdf:type schema:DefinedTerm
109 Na45e269d28a040f59625d20fbd91cdbe rdf:first sg:person.0600656007.06
110 rdf:rest N1588cbd2050f4958830763902437a2fa
111 Nba084f9d3dd14dc29fa3b09185826f09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Reproducibility of Results
113 rdf:type schema:DefinedTerm
114 Nc2a41d5575174d47ab3f95cd2fbe3c66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Formaldehyde
116 rdf:type schema:DefinedTerm
117 Nc4258340a0654f0a91ffc594de651ca2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 Nc783885bbfe0431594966a932e4309d3 schema:name readcube_id
121 schema:value c870fe4939ccf38504eaa1494afcc1623b1d083324b9ade4a3dfe43fb6e04b2d
122 rdf:type schema:PropertyValue
123 Nca2493eab43744e58b521a7df8b4a923 rdf:first sg:person.0703205445.08
124 rdf:rest N21f667324c4047509cb6a690cbae80fa
125 Nd1f8e46dd7574bcea9b8213462d27b68 schema:name pubmed_id
126 schema:value 16751780
127 rdf:type schema:PropertyValue
128 Ne36c45c20b564a7fa0f5fd2c3efa5d85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Time Factors
130 rdf:type schema:DefinedTerm
131 Ne58e0746f6464229b87905ea049fd34d rdf:first sg:person.013346033202.78
132 rdf:rest N3ae39f1b2a6d4bb2a027624c2f0bf50b
133 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
134 schema:name Medical and Health Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
137 schema:name Oncology and Carcinogenesis
138 rdf:type schema:DefinedTerm
139 sg:grant.5138787 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.3700441
140 rdf:type schema:MonetaryGrant
141 sg:journal.1017964 schema:issn 0023-6837
142 1530-0307
143 schema:name Laboratory Investigation
144 rdf:type schema:Periodical
145 sg:person.01010772013.31 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
146 schema:familyName Liu
147 schema:givenName Lu
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010772013.31
149 rdf:type schema:Person
150 sg:person.01147713317.01 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
151 schema:familyName Du
152 schema:givenName Ming-Qing
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147713317.01
154 rdf:type schema:Person
155 sg:person.01311277251.50 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
156 schema:familyName Hamoudi
157 schema:givenName Rifat A
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311277251.50
159 rdf:type schema:Person
160 sg:person.013346033202.78 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
161 schema:familyName Ichimura
162 schema:givenName Koichi
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013346033202.78
164 rdf:type schema:Person
165 sg:person.0600656007.06 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
166 schema:familyName Collins
167 schema:givenName V Peter
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600656007.06
169 rdf:type schema:Person
170 sg:person.0703205445.08 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
171 schema:familyName Johnson
172 schema:givenName Nicola A
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703205445.08
174 rdf:type schema:Person
175 sg:person.0757053247.16 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
176 schema:familyName Pearson
177 schema:givenName Danita M
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757053247.16
179 rdf:type schema:Person
180 sg:pub.10.1023/b:chro.0000009325.69828.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041947574
181 https://doi.org/10.1023/b:chro.0000009325.69828.83
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/ng1307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001695810
184 https://doi.org/10.1038/ng1307
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/sj.leu.2403202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027716225
187 https://doi.org/10.1038/sj.leu.2403202
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/sj.onc.1209156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026806118
190 https://doi.org/10.1038/sj.onc.1209156
191 rdf:type schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1077003895 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1082424628 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1082961046 schema:CreativeWork
195 https://doi.org/10.1002/gcc.10155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000686863
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/gcc.20181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005715191
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ygeno.2005.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018203517
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0014-5793(99)01523-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035390738
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s1525-1578(10)60543-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027316798
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1097/00005072-200606000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016350764
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1097/00019606-200403000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007714550
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1097/00019606-200406000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003938415
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1158/0008-5472.can-04-1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016954304
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1182/blood-2005-07-2950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042127866
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
216 schema:name Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...