Nuclear functions of NME proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10-23

AUTHORS

Gemma S Puts, M Kathryn Leonard, Nidhi V Pamidimukkala, Devin E Snyder, David M Kaetzel

ABSTRACT

The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3′–5′ exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression. More... »

PAGES

211-218

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/labinvest.2017.109

DOI

http://dx.doi.org/10.1038/labinvest.2017.109

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092325470

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29058704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Nucleus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isoenzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleoside-Diphosphate Kinase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puts", 
        "givenName": "Gemma S", 
        "id": "sg:person.0617722277.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617722277.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leonard", 
        "givenName": "M Kathryn", 
        "id": "sg:person.01061436230.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061436230.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pamidimukkala", 
        "givenName": "Nidhi V", 
        "id": "sg:person.013670616557.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670616557.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Snyder", 
        "givenName": "Devin E", 
        "id": "sg:person.013403256333.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403256333.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaetzel", 
        "givenName": "David M", 
        "id": "sg:person.0700013513.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700013513.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1475-2867-8-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036617896", 
          "https://doi.org/10.1186/1475-2867-8-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020396722860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039505175", 
          "https://doi.org/10.1023/a:1020396722860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/313762a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045780752", 
          "https://doi.org/10.1038/313762a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022261009207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016954260", 
          "https://doi.org/10.1023/a:1022261009207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10863-006-9040-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000858139", 
          "https://doi.org/10.1007/s10863-006-9040-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-11-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001020880", 
          "https://doi.org/10.1186/1471-2148-11-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051255007", 
          "https://doi.org/10.1038/nrm804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11010-009-0120-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046798103", 
          "https://doi.org/10.1007/s11010-009-0120-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00210-011-0645-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020467277", 
          "https://doi.org/10.1007/s00210-011-0645-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-23", 
    "datePublishedReg": "2017-10-23", 
    "description": "The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3\u2032\u20135\u2032 exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/labinvest.2017.109", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2481460", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2682830", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2474505", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2623099", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017964", 
        "issn": [
          "0023-6837", 
          "1530-0307"
        ], 
        "name": "Laboratory Investigation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "keywords": [
      "NME proteins", 
      "nuclear functions", 
      "subcellular localization", 
      "canonical nuclear localization signal", 
      "non-B-form structures", 
      "gene expression programs", 
      "nuclear localization signal", 
      "cancer progression", 
      "DNA damage repair", 
      "DNA-binding activity", 
      "canonical transcription factor", 
      "Nme family", 
      "localization signal", 
      "expression programs", 
      "kinase function", 
      "putative functions", 
      "transcription factors", 
      "gene transcription", 
      "cellular settings", 
      "genomic instability", 
      "DNA binding", 
      "damage repair", 
      "regulatory functions", 
      "exonuclease activity", 
      "NME1", 
      "metastatic phenotype", 
      "DNA proofreading", 
      "enzymatic activity", 
      "protein", 
      "isoforms", 
      "cancer cells", 
      "transcription", 
      "malignant progression", 
      "DNA", 
      "possible role", 
      "critical insights", 
      "localization", 
      "repair", 
      "phenotype", 
      "progression", 
      "proofreading", 
      "better understanding", 
      "activity", 
      "function", 
      "role", 
      "binding", 
      "expression", 
      "cells", 
      "family", 
      "domain", 
      "nucleus", 
      "markers", 
      "cancer", 
      "NMe2", 
      "prognostic marker", 
      "strict sense", 
      "insights", 
      "breaks", 
      "mechanism", 
      "region", 
      "important prognostic marker", 
      "patterns", 
      "understanding", 
      "ability", 
      "signals", 
      "NMe3", 
      "structure", 
      "factors", 
      "number", 
      "review", 
      "data", 
      "instability", 
      "program", 
      "sense", 
      "clinical data", 
      "setting"
    ], 
    "name": "Nuclear functions of NME proteins", 
    "pagination": "211-218", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092325470"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/labinvest.2017.109"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29058704"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/labinvest.2017.109", 
      "https://app.dimensions.ai/details/publication/pub.1092325470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_731.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/labinvest.2017.109"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2017.109'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2017.109'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2017.109'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2017.109'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      119 URIs      102 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/labinvest.2017.109 schema:about N2e83205761ee45edacd960180269ed64
2 N301610949c504919b55f97eff6388a31
3 N31de26c94be64fd3ad04f011b8d959e9
4 N4752bd5e489d455a96d02e344d60a513
5 N79eabbb8c08447abb908c702a6d3bb7b
6 Nd5fdc9b7b5f7442c85e51e88a1c0e3b8
7 Nf23912050fd347b9a3392c61c4a187e8
8 Nf5bb2f208ab949d09aee1888bd9e3a99
9 Nfeea1695c0474d7baf47f56e4aee80e9
10 anzsrc-for:11
11 anzsrc-for:1103
12 schema:author Ndf65328a4dd043e493362f66d65e9758
13 schema:citation sg:pub.10.1007/s00210-011-0645-7
14 sg:pub.10.1007/s10863-006-9040-3
15 sg:pub.10.1007/s11010-009-0120-7
16 sg:pub.10.1023/a:1020396722860
17 sg:pub.10.1023/a:1022261009207
18 sg:pub.10.1038/313762a0
19 sg:pub.10.1038/nrm804
20 sg:pub.10.1186/1471-2148-11-87
21 sg:pub.10.1186/1475-2867-8-6
22 schema:datePublished 2017-10-23
23 schema:datePublishedReg 2017-10-23
24 schema:description The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3′–5′ exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N03ea8daef04040609ed8bb622b9000e1
28 Nb322f474811d4b8f95105802a71e31ce
29 sg:journal.1017964
30 schema:keywords DNA
31 DNA binding
32 DNA damage repair
33 DNA proofreading
34 DNA-binding activity
35 NME proteins
36 NME1
37 NMe2
38 NMe3
39 Nme family
40 ability
41 activity
42 better understanding
43 binding
44 breaks
45 cancer
46 cancer cells
47 cancer progression
48 canonical nuclear localization signal
49 canonical transcription factor
50 cells
51 cellular settings
52 clinical data
53 critical insights
54 damage repair
55 data
56 domain
57 enzymatic activity
58 exonuclease activity
59 expression
60 expression programs
61 factors
62 family
63 function
64 gene expression programs
65 gene transcription
66 genomic instability
67 important prognostic marker
68 insights
69 instability
70 isoforms
71 kinase function
72 localization
73 localization signal
74 malignant progression
75 markers
76 mechanism
77 metastatic phenotype
78 non-B-form structures
79 nuclear functions
80 nuclear localization signal
81 nucleus
82 number
83 patterns
84 phenotype
85 possible role
86 prognostic marker
87 program
88 progression
89 proofreading
90 protein
91 putative functions
92 region
93 regulatory functions
94 repair
95 review
96 role
97 sense
98 setting
99 signals
100 strict sense
101 structure
102 subcellular localization
103 transcription
104 transcription factors
105 understanding
106 schema:name Nuclear functions of NME proteins
107 schema:pagination 211-218
108 schema:productId N2e6f1dd560e74203bfbd0cfe1d6cfbef
109 N381ecee785eb4f8fa6ae5e19d23fc9e2
110 Nea387205ac34437cb023ffc7bedd456a
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092325470
112 https://doi.org/10.1038/labinvest.2017.109
113 schema:sdDatePublished 2022-09-02T16:00
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Ne5e55ef8e2714c9aac07751082e37771
116 schema:url https://doi.org/10.1038/labinvest.2017.109
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N03ea8daef04040609ed8bb622b9000e1 schema:volumeNumber 98
121 rdf:type schema:PublicationVolume
122 N167078c6b3a446f4862480d6639c736f rdf:first sg:person.01061436230.15
123 rdf:rest N79415edfdcb24d2094ceb444d0d6d5cf
124 N2e6f1dd560e74203bfbd0cfe1d6cfbef schema:name doi
125 schema:value 10.1038/labinvest.2017.109
126 rdf:type schema:PropertyValue
127 N2e83205761ee45edacd960180269ed64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Animals
129 rdf:type schema:DefinedTerm
130 N301610949c504919b55f97eff6388a31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Nucleoside-Diphosphate Kinase
132 rdf:type schema:DefinedTerm
133 N31de26c94be64fd3ad04f011b8d959e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Models, Genetic
135 rdf:type schema:DefinedTerm
136 N381ecee785eb4f8fa6ae5e19d23fc9e2 schema:name pubmed_id
137 schema:value 29058704
138 rdf:type schema:PropertyValue
139 N4752bd5e489d455a96d02e344d60a513 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Isoenzymes
141 rdf:type schema:DefinedTerm
142 N79415edfdcb24d2094ceb444d0d6d5cf rdf:first sg:person.013670616557.99
143 rdf:rest Nde6fbf82e0144a5db21a62c292b67b25
144 N79eabbb8c08447abb908c702a6d3bb7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Gene Expression Regulation
146 rdf:type schema:DefinedTerm
147 Nb322f474811d4b8f95105802a71e31ce schema:issueNumber 2
148 rdf:type schema:PublicationIssue
149 Nbbdba37fff594c85b38f88d08770e1db rdf:first sg:person.0700013513.23
150 rdf:rest rdf:nil
151 Nd5fdc9b7b5f7442c85e51e88a1c0e3b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Protein Binding
153 rdf:type schema:DefinedTerm
154 Nde6fbf82e0144a5db21a62c292b67b25 rdf:first sg:person.013403256333.66
155 rdf:rest Nbbdba37fff594c85b38f88d08770e1db
156 Ndf65328a4dd043e493362f66d65e9758 rdf:first sg:person.0617722277.73
157 rdf:rest N167078c6b3a446f4862480d6639c736f
158 Ne5e55ef8e2714c9aac07751082e37771 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 Nea387205ac34437cb023ffc7bedd456a schema:name dimensions_id
161 schema:value pub.1092325470
162 rdf:type schema:PropertyValue
163 Nf23912050fd347b9a3392c61c4a187e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Cell Nucleus
165 rdf:type schema:DefinedTerm
166 Nf5bb2f208ab949d09aee1888bd9e3a99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 Nfeea1695c0474d7baf47f56e4aee80e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name DNA
171 rdf:type schema:DefinedTerm
172 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medical and Health Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
176 schema:name Clinical Sciences
177 rdf:type schema:DefinedTerm
178 sg:grant.2474505 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2017.109
179 rdf:type schema:MonetaryGrant
180 sg:grant.2481460 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2017.109
181 rdf:type schema:MonetaryGrant
182 sg:grant.2623099 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2017.109
183 rdf:type schema:MonetaryGrant
184 sg:grant.2682830 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2017.109
185 rdf:type schema:MonetaryGrant
186 sg:journal.1017964 schema:issn 0023-6837
187 1530-0307
188 schema:name Laboratory Investigation
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01061436230.15 schema:affiliation grid-institutes:grid.411024.2
192 schema:familyName Leonard
193 schema:givenName M Kathryn
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061436230.15
195 rdf:type schema:Person
196 sg:person.013403256333.66 schema:affiliation grid-institutes:grid.411024.2
197 schema:familyName Snyder
198 schema:givenName Devin E
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403256333.66
200 rdf:type schema:Person
201 sg:person.013670616557.99 schema:affiliation grid-institutes:grid.411024.2
202 schema:familyName Pamidimukkala
203 schema:givenName Nidhi V
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670616557.99
205 rdf:type schema:Person
206 sg:person.0617722277.73 schema:affiliation grid-institutes:grid.411024.2
207 schema:familyName Puts
208 schema:givenName Gemma S
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617722277.73
210 rdf:type schema:Person
211 sg:person.0700013513.23 schema:affiliation grid-institutes:grid.411024.2
212 schema:familyName Kaetzel
213 schema:givenName David M
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700013513.23
215 rdf:type schema:Person
216 sg:pub.10.1007/s00210-011-0645-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020467277
217 https://doi.org/10.1007/s00210-011-0645-7
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s10863-006-9040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000858139
220 https://doi.org/10.1007/s10863-006-9040-3
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s11010-009-0120-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046798103
223 https://doi.org/10.1007/s11010-009-0120-7
224 rdf:type schema:CreativeWork
225 sg:pub.10.1023/a:1020396722860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039505175
226 https://doi.org/10.1023/a:1020396722860
227 rdf:type schema:CreativeWork
228 sg:pub.10.1023/a:1022261009207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016954260
229 https://doi.org/10.1023/a:1022261009207
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/313762a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045780752
232 https://doi.org/10.1038/313762a0
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nrm804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051255007
235 https://doi.org/10.1038/nrm804
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1471-2148-11-87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001020880
238 https://doi.org/10.1186/1471-2148-11-87
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1475-2867-8-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036617896
241 https://doi.org/10.1186/1475-2867-8-6
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.411024.2 schema:alternateName Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
244 schema:name Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...