Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-09

AUTHORS

Harriet M Kluger, Summar F Siddiqui, Cesar Angeletti, Mario Sznol, William K Kelly, Annette M Molinaro, Robert L Camp

ABSTRACT

Recent development of antiangiogenic therapy for renal cell carcinoma (RCC) has significantly improved the treatment of these often refractory tumors. However, not all patients respond to therapy and assays for predicting outcome are needed. As a first step, we analyzed a retrospective cohort of tumors and assessed the ability of VEGF and VEGF receptors (VEGF-R1, -R2 and -R3) to classify tumors. We analyzed tissue microarrays containing 330 RCCs using a novel method of automated quantitative analysis of VEGF and VEGF-R expression by fluorescent immunohistochemistry. Expression of markers was separately quantified within three tissue components: tumor cells, endothelial cells and adjacent normal epithelium. VEGF and VEGF receptors were tightly coexpressed both within tumors and within adjacent normal cells (all P-values <0.001). Tumor cell expression of VEGF-R1 and -R2 was strongly and inversely correlated with vessel area (P<0.0001). Unsupervised hierarchical clustering classified tumors by coordinated expression of VEGF and VEGF-Rs. The distribution of clear cell and papillary tumors was not significantly different between clusters. Clusters with high expression of VEGF and VEGF-Rs in the tumor cells exhibited poor survival when compared with the other clusters on uni- and multivariable analysis. VEGF and VEGF receptors exhibit a complex pattern of coordinated expression in RCC. Clustering tumors by VEGF and VEGF-R in tissue components demonstrates distinct tumor phenotypes with different outcomes, and may provide a means for determining which tumors will respond to what antiangiogenic therapies. More... »

PAGES

labinvest200865

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/labinvest.2008.65

DOI

http://dx.doi.org/10.1038/labinvest.2008.65

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004074271

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18626467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Renal Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endothelium, Vascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Vascular Endothelial Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Array Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factor A", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kluger", 
        "givenName": "Harriet M", 
        "id": "sg:person.01336750727.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddiqui", 
        "givenName": "Summar F", 
        "id": "sg:person.01030245714.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030245714.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angeletti", 
        "givenName": "Cesar", 
        "id": "sg:person.01325454114.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325454114.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sznol", 
        "givenName": "Mario", 
        "id": "sg:person.0706626451.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706626451.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly", 
        "givenName": "William K", 
        "id": "sg:person.014611705677.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611705677.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molinaro", 
        "givenName": "Annette M", 
        "id": "sg:person.01340552210.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340552210.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camp", 
        "givenName": "Robert L", 
        "id": "sg:person.012367147604.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cncr.10635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000182253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2006.06387.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000975109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(01)67599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003018323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(01)67599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003018323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2004.04786.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004714641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa065044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-2560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009643851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1620/tjem.195.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010039164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013038565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2006.06376.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017769150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ju.0000074870.54671.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018970576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ju.0000074870.54671.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018970576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2004.04605.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029569537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2007.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033692752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035025701", 
          "https://doi.org/10.1038/ncponc0403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035025701", 
          "https://doi.org/10.1038/ncponc0403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<992::aid-cncr26>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035569909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035650107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(98)00019-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047291831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1390807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069468261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075262311", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.23.16_suppl.lba4510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079369912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082146912", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082395614", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09", 
    "datePublishedReg": "2008-09-01", 
    "description": "Recent development of antiangiogenic therapy for renal cell carcinoma (RCC) has significantly improved the treatment of these often refractory tumors. However, not all patients respond to therapy and assays for predicting outcome are needed. As a first step, we analyzed a retrospective cohort of tumors and assessed the ability of VEGF and VEGF receptors (VEGF-R1, -R2 and -R3) to classify tumors. We analyzed tissue microarrays containing 330 RCCs using a novel method of automated quantitative analysis of VEGF and VEGF-R expression by fluorescent immunohistochemistry. Expression of markers was separately quantified within three tissue components: tumor cells, endothelial cells and adjacent normal epithelium. VEGF and VEGF receptors were tightly coexpressed both within tumors and within adjacent normal cells (all P-values <0.001). Tumor cell expression of VEGF-R1 and -R2 was strongly and inversely correlated with vessel area (P<0.0001). Unsupervised hierarchical clustering classified tumors by coordinated expression of VEGF and VEGF-Rs. The distribution of clear cell and papillary tumors was not significantly different between clusters. Clusters with high expression of VEGF and VEGF-Rs in the tumor cells exhibited poor survival when compared with the other clusters on uni- and multivariable analysis. VEGF and VEGF receptors exhibit a complex pattern of coordinated expression in RCC. Clustering tumors by VEGF and VEGF-R in tissue components demonstrates distinct tumor phenotypes with different outcomes, and may provide a means for determining which tumors will respond to what antiangiogenic therapies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/labinvest.2008.65", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2417459", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2604251", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2478248", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017964", 
        "issn": [
          "0023-6837", 
          "1530-0307"
        ], 
        "name": "Laboratory Investigation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells", 
    "pagination": "labinvest200865", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1369cb9b8d342abce741da52799dda950fa107bbad08ec58dfacf2274d5db2f9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18626467"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0376617"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/labinvest.2008.65"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004074271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/labinvest.2008.65", 
      "https://app.dimensions.ai/details/publication/pub.1004074271"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/labinvest200865"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      64 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/labinvest.2008.65 schema:about N1c377cea5d484cbe99598c75ba5e02e9
2 N424bc950e1334c4e9a94270ff23181b5
3 N79355dd18f164183acbd93fca1844153
4 N7dc238a1762e49f5a67f7e5fe2b6f570
5 N8a780c6330b24c459c5a0afe95ff1328
6 N8d96715de454465686d6e5ddb6fa6cb9
7 Nb4cd637e77b74c85b5bfb187a97a52fe
8 Nb6843b89fe384a2d9403d5419e391176
9 Nb9a6b6ebbc454e59a222f7d1284c1aa1
10 Nbc1bbe5e43174a2c8c9f2340f69a3ba7
11 Nd1047a200e2d4dca98ec4a861f423c67
12 Ne6b70b20488c4502b1e5cd031ca674fc
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author N5a24a560517c40d5a72e4364644cf979
16 schema:citation sg:pub.10.1038/ncponc0403
17 sg:pub.10.1038/nm791
18 https://app.dimensions.ai/details/publication/pub.1075262311
19 https://app.dimensions.ai/details/publication/pub.1082146912
20 https://app.dimensions.ai/details/publication/pub.1082395614
21 https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<992::aid-cncr26>3.0.co;2-q
22 https://doi.org/10.1002/cncr.10635
23 https://doi.org/10.1002/cncr.20887
24 https://doi.org/10.1016/j.humpath.2007.05.017
25 https://doi.org/10.1016/s0022-5347(01)67599-2
26 https://doi.org/10.1016/s0090-4295(98)00019-3
27 https://doi.org/10.1056/nejmoa065044
28 https://doi.org/10.1073/pnas.95.25.14863
29 https://doi.org/10.1093/bioinformatics/bti499
30 https://doi.org/10.1097/01.ju.0000074870.54671.98
31 https://doi.org/10.1111/j.1464-410x.2004.04605.x
32 https://doi.org/10.1111/j.1464-410x.2004.04786.x
33 https://doi.org/10.1111/j.1464-410x.2006.06376.x
34 https://doi.org/10.1111/j.1464-410x.2006.06387.x
35 https://doi.org/10.1158/0008-5472.can-05-2560
36 https://doi.org/10.1200/jco.2005.23.16_suppl.lba4510
37 https://doi.org/10.1620/tjem.195.101
38 https://doi.org/10.2307/1390807
39 schema:datePublished 2008-09
40 schema:datePublishedReg 2008-09-01
41 schema:description Recent development of antiangiogenic therapy for renal cell carcinoma (RCC) has significantly improved the treatment of these often refractory tumors. However, not all patients respond to therapy and assays for predicting outcome are needed. As a first step, we analyzed a retrospective cohort of tumors and assessed the ability of VEGF and VEGF receptors (VEGF-R1, -R2 and -R3) to classify tumors. We analyzed tissue microarrays containing 330 RCCs using a novel method of automated quantitative analysis of VEGF and VEGF-R expression by fluorescent immunohistochemistry. Expression of markers was separately quantified within three tissue components: tumor cells, endothelial cells and adjacent normal epithelium. VEGF and VEGF receptors were tightly coexpressed both within tumors and within adjacent normal cells (all P-values <0.001). Tumor cell expression of VEGF-R1 and -R2 was strongly and inversely correlated with vessel area (P<0.0001). Unsupervised hierarchical clustering classified tumors by coordinated expression of VEGF and VEGF-Rs. The distribution of clear cell and papillary tumors was not significantly different between clusters. Clusters with high expression of VEGF and VEGF-Rs in the tumor cells exhibited poor survival when compared with the other clusters on uni- and multivariable analysis. VEGF and VEGF receptors exhibit a complex pattern of coordinated expression in RCC. Clustering tumors by VEGF and VEGF-R in tissue components demonstrates distinct tumor phenotypes with different outcomes, and may provide a means for determining which tumors will respond to what antiangiogenic therapies.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N143634f2334348e48646ffc210e7493d
46 Nf1468fc0d2f641ae8799e97c064a2344
47 sg:journal.1017964
48 schema:name Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells
49 schema:pagination labinvest200865
50 schema:productId N42bd4314820b4a139b3fd0f1f0e67d41
51 N551ec14ea77843cbb1946222bddc47b2
52 Na7cbc36a25a04bf5bd7df1a7280cbff1
53 Ne98eeea2f86947e1ab9d9f5202a0be5d
54 Nf2daaa1e9585441dbfc3aebc6594cf8b
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004074271
56 https://doi.org/10.1038/labinvest.2008.65
57 schema:sdDatePublished 2019-04-10T19:44
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N29a820802c034c15b088de3d66dc1bd2
60 schema:url http://www.nature.com/articles/labinvest200865
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N079a3434c1b54ad38ae61739e89d767d rdf:first sg:person.0706626451.72
65 rdf:rest Na0ad732886ba4fac9791ebde29440793
66 N143634f2334348e48646ffc210e7493d schema:issueNumber 9
67 rdf:type schema:PublicationIssue
68 N1c377cea5d484cbe99598c75ba5e02e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Kidney Neoplasms
70 rdf:type schema:DefinedTerm
71 N268b95ab8b3c488aa6da7e786e69e493 rdf:first sg:person.01030245714.67
72 rdf:rest Ne5d8453ac16b484e914af6591a2909ab
73 N29a820802c034c15b088de3d66dc1bd2 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N424bc950e1334c4e9a94270ff23181b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Vascular Endothelial Growth Factor A
77 rdf:type schema:DefinedTerm
78 N42bd4314820b4a139b3fd0f1f0e67d41 schema:name readcube_id
79 schema:value 1369cb9b8d342abce741da52799dda950fa107bbad08ec58dfacf2274d5db2f9
80 rdf:type schema:PropertyValue
81 N551ec14ea77843cbb1946222bddc47b2 schema:name dimensions_id
82 schema:value pub.1004074271
83 rdf:type schema:PropertyValue
84 N5a24a560517c40d5a72e4364644cf979 rdf:first sg:person.01336750727.45
85 rdf:rest N268b95ab8b3c488aa6da7e786e69e493
86 N79355dd18f164183acbd93fca1844153 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Humans
88 rdf:type schema:DefinedTerm
89 N7dc238a1762e49f5a67f7e5fe2b6f570 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Endothelium, Vascular
91 rdf:type schema:DefinedTerm
92 N8a780c6330b24c459c5a0afe95ff1328 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Tissue Array Analysis
94 rdf:type schema:DefinedTerm
95 N8d96715de454465686d6e5ddb6fa6cb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Adult
97 rdf:type schema:DefinedTerm
98 Na0ad732886ba4fac9791ebde29440793 rdf:first sg:person.014611705677.75
99 rdf:rest Nfaee68adc6314632a18fced2175f420b
100 Na7cbc36a25a04bf5bd7df1a7280cbff1 schema:name nlm_unique_id
101 schema:value 0376617
102 rdf:type schema:PropertyValue
103 Nb4cd637e77b74c85b5bfb187a97a52fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Carcinoma, Renal Cell
105 rdf:type schema:DefinedTerm
106 Nb6843b89fe384a2d9403d5419e391176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Immunohistochemistry
108 rdf:type schema:DefinedTerm
109 Nb9a6b6ebbc454e59a222f7d1284c1aa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Aged, 80 and over
111 rdf:type schema:DefinedTerm
112 Nbc1bbe5e43174a2c8c9f2340f69a3ba7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Aged
114 rdf:type schema:DefinedTerm
115 Nd1047a200e2d4dca98ec4a861f423c67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Middle Aged
117 rdf:type schema:DefinedTerm
118 Ne5d8453ac16b484e914af6591a2909ab rdf:first sg:person.01325454114.10
119 rdf:rest N079a3434c1b54ad38ae61739e89d767d
120 Ne6b70b20488c4502b1e5cd031ca674fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Receptors, Vascular Endothelial Growth Factor
122 rdf:type schema:DefinedTerm
123 Ne98eeea2f86947e1ab9d9f5202a0be5d schema:name doi
124 schema:value 10.1038/labinvest.2008.65
125 rdf:type schema:PropertyValue
126 Nf1468fc0d2f641ae8799e97c064a2344 schema:volumeNumber 88
127 rdf:type schema:PublicationVolume
128 Nf2daaa1e9585441dbfc3aebc6594cf8b schema:name pubmed_id
129 schema:value 18626467
130 rdf:type schema:PropertyValue
131 Nfa3d7c22a3944b4c852eb8e0c96d0ea9 rdf:first sg:person.012367147604.10
132 rdf:rest rdf:nil
133 Nfaee68adc6314632a18fced2175f420b rdf:first sg:person.01340552210.25
134 rdf:rest Nfa3d7c22a3944b4c852eb8e0c96d0ea9
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
139 schema:name Oncology and Carcinogenesis
140 rdf:type schema:DefinedTerm
141 sg:grant.2417459 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2008.65
142 rdf:type schema:MonetaryGrant
143 sg:grant.2478248 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2008.65
144 rdf:type schema:MonetaryGrant
145 sg:grant.2604251 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2008.65
146 rdf:type schema:MonetaryGrant
147 sg:journal.1017964 schema:issn 0023-6837
148 1530-0307
149 schema:name Laboratory Investigation
150 rdf:type schema:Periodical
151 sg:person.01030245714.67 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
152 schema:familyName Siddiqui
153 schema:givenName Summar F
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030245714.67
155 rdf:type schema:Person
156 sg:person.012367147604.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
157 schema:familyName Camp
158 schema:givenName Robert L
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10
160 rdf:type schema:Person
161 sg:person.01325454114.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
162 schema:familyName Angeletti
163 schema:givenName Cesar
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325454114.10
165 rdf:type schema:Person
166 sg:person.01336750727.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
167 schema:familyName Kluger
168 schema:givenName Harriet M
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45
170 rdf:type schema:Person
171 sg:person.01340552210.25 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
172 schema:familyName Molinaro
173 schema:givenName Annette M
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340552210.25
175 rdf:type schema:Person
176 sg:person.014611705677.75 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
177 schema:familyName Kelly
178 schema:givenName William K
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611705677.75
180 rdf:type schema:Person
181 sg:person.0706626451.72 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
182 schema:familyName Sznol
183 schema:givenName Mario
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706626451.72
185 rdf:type schema:Person
186 sg:pub.10.1038/ncponc0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035025701
187 https://doi.org/10.1038/ncponc0403
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
190 https://doi.org/10.1038/nm791
191 rdf:type schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1075262311 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1082146912 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1082395614 schema:CreativeWork
195 https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<992::aid-cncr26>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1035569909
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/cncr.10635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000182253
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/cncr.20887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035650107
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.humpath.2007.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033692752
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0022-5347(01)67599-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003018323
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0090-4295(98)00019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047291831
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1056/nejmoa065044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947936
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/bti499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013038565
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1097/01.ju.0000074870.54671.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018970576
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/j.1464-410x.2004.04605.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029569537
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1464-410x.2004.04786.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004714641
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.1464-410x.2006.06376.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017769150
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1111/j.1464-410x.2006.06387.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000975109
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1158/0008-5472.can-05-2560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009643851
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1200/jco.2005.23.16_suppl.lba4510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079369912
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1620/tjem.195.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010039164
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2307/1390807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069468261
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
232 schema:name Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
233 Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
234 Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...