Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-09

AUTHORS

Harriet M Kluger, Summar F Siddiqui, Cesar Angeletti, Mario Sznol, William K Kelly, Annette M Molinaro, Robert L Camp

ABSTRACT

Recent development of antiangiogenic therapy for renal cell carcinoma (RCC) has significantly improved the treatment of these often refractory tumors. However, not all patients respond to therapy and assays for predicting outcome are needed. As a first step, we analyzed a retrospective cohort of tumors and assessed the ability of VEGF and VEGF receptors (VEGF-R1, -R2 and -R3) to classify tumors. We analyzed tissue microarrays containing 330 RCCs using a novel method of automated quantitative analysis of VEGF and VEGF-R expression by fluorescent immunohistochemistry. Expression of markers was separately quantified within three tissue components: tumor cells, endothelial cells and adjacent normal epithelium. VEGF and VEGF receptors were tightly coexpressed both within tumors and within adjacent normal cells (all P-values <0.001). Tumor cell expression of VEGF-R1 and -R2 was strongly and inversely correlated with vessel area (P<0.0001). Unsupervised hierarchical clustering classified tumors by coordinated expression of VEGF and VEGF-Rs. The distribution of clear cell and papillary tumors was not significantly different between clusters. Clusters with high expression of VEGF and VEGF-Rs in the tumor cells exhibited poor survival when compared with the other clusters on uni- and multivariable analysis. VEGF and VEGF receptors exhibit a complex pattern of coordinated expression in RCC. Clustering tumors by VEGF and VEGF-R in tissue components demonstrates distinct tumor phenotypes with different outcomes, and may provide a means for determining which tumors will respond to what antiangiogenic therapies. More... »

PAGES

labinvest200865

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/labinvest.2008.65

DOI

http://dx.doi.org/10.1038/labinvest.2008.65

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004074271

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18626467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Renal Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endothelium, Vascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Vascular Endothelial Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Array Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factor A", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kluger", 
        "givenName": "Harriet M", 
        "id": "sg:person.01336750727.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddiqui", 
        "givenName": "Summar F", 
        "id": "sg:person.01030245714.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030245714.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angeletti", 
        "givenName": "Cesar", 
        "id": "sg:person.01325454114.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325454114.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sznol", 
        "givenName": "Mario", 
        "id": "sg:person.0706626451.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706626451.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly", 
        "givenName": "William K", 
        "id": "sg:person.014611705677.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611705677.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molinaro", 
        "givenName": "Annette M", 
        "id": "sg:person.01340552210.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340552210.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camp", 
        "givenName": "Robert L", 
        "id": "sg:person.012367147604.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cncr.10635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000182253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2006.06387.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000975109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(01)67599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003018323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(01)67599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003018323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2004.04786.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004714641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa065044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-2560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009643851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1620/tjem.195.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010039164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013038565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2006.06376.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017769150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ju.0000074870.54671.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018970576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ju.0000074870.54671.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018970576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2004.04605.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029569537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2007.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033692752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035025701", 
          "https://doi.org/10.1038/ncponc0403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035025701", 
          "https://doi.org/10.1038/ncponc0403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<992::aid-cncr26>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035569909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035650107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(98)00019-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047291831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1390807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069468261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075262311", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.23.16_suppl.lba4510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079369912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082146912", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082395614", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09", 
    "datePublishedReg": "2008-09-01", 
    "description": "Recent development of antiangiogenic therapy for renal cell carcinoma (RCC) has significantly improved the treatment of these often refractory tumors. However, not all patients respond to therapy and assays for predicting outcome are needed. As a first step, we analyzed a retrospective cohort of tumors and assessed the ability of VEGF and VEGF receptors (VEGF-R1, -R2 and -R3) to classify tumors. We analyzed tissue microarrays containing 330 RCCs using a novel method of automated quantitative analysis of VEGF and VEGF-R expression by fluorescent immunohistochemistry. Expression of markers was separately quantified within three tissue components: tumor cells, endothelial cells and adjacent normal epithelium. VEGF and VEGF receptors were tightly coexpressed both within tumors and within adjacent normal cells (all P-values <0.001). Tumor cell expression of VEGF-R1 and -R2 was strongly and inversely correlated with vessel area (P<0.0001). Unsupervised hierarchical clustering classified tumors by coordinated expression of VEGF and VEGF-Rs. The distribution of clear cell and papillary tumors was not significantly different between clusters. Clusters with high expression of VEGF and VEGF-Rs in the tumor cells exhibited poor survival when compared with the other clusters on uni- and multivariable analysis. VEGF and VEGF receptors exhibit a complex pattern of coordinated expression in RCC. Clustering tumors by VEGF and VEGF-R in tissue components demonstrates distinct tumor phenotypes with different outcomes, and may provide a means for determining which tumors will respond to what antiangiogenic therapies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/labinvest.2008.65", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2417459", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2604251", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2478248", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017964", 
        "issn": [
          "0023-6837", 
          "1530-0307"
        ], 
        "name": "Laboratory Investigation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells", 
    "pagination": "labinvest200865", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1369cb9b8d342abce741da52799dda950fa107bbad08ec58dfacf2274d5db2f9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18626467"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0376617"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/labinvest.2008.65"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004074271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/labinvest.2008.65", 
      "https://app.dimensions.ai/details/publication/pub.1004074271"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/labinvest200865"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/labinvest.2008.65'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      64 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/labinvest.2008.65 schema:about N0147abe3e16745438c594ddac1e3e2ba
2 N14aea815de7347acaf2c1a6f550697ff
3 N1db06794649a45ea9dc37c667a6ad651
4 N69ffd13fb925461ea04d820d1277a9e3
5 N92aa6eb1fad64bb9b78500049b116c9b
6 N9523ac4286ec4ea3bb27ac9d4a4609f5
7 Nb25f5100c451458d86192cdc8ce4e4dd
8 Nb88ab00028014953a5a0f6aefbdc4737
9 Nd82b06b2876844acb831ba89a5bd3a41
10 Nd9acaaf6bac746558480636a84092028
11 Ne6bcf6fd12f34ec4a2cf7296c77123c3
12 Nf55947030b514786941eeaf65f55a6d3
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author N3c843caa25e5421a99ab594d522f650e
16 schema:citation sg:pub.10.1038/ncponc0403
17 sg:pub.10.1038/nm791
18 https://app.dimensions.ai/details/publication/pub.1075262311
19 https://app.dimensions.ai/details/publication/pub.1082146912
20 https://app.dimensions.ai/details/publication/pub.1082395614
21 https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<992::aid-cncr26>3.0.co;2-q
22 https://doi.org/10.1002/cncr.10635
23 https://doi.org/10.1002/cncr.20887
24 https://doi.org/10.1016/j.humpath.2007.05.017
25 https://doi.org/10.1016/s0022-5347(01)67599-2
26 https://doi.org/10.1016/s0090-4295(98)00019-3
27 https://doi.org/10.1056/nejmoa065044
28 https://doi.org/10.1073/pnas.95.25.14863
29 https://doi.org/10.1093/bioinformatics/bti499
30 https://doi.org/10.1097/01.ju.0000074870.54671.98
31 https://doi.org/10.1111/j.1464-410x.2004.04605.x
32 https://doi.org/10.1111/j.1464-410x.2004.04786.x
33 https://doi.org/10.1111/j.1464-410x.2006.06376.x
34 https://doi.org/10.1111/j.1464-410x.2006.06387.x
35 https://doi.org/10.1158/0008-5472.can-05-2560
36 https://doi.org/10.1200/jco.2005.23.16_suppl.lba4510
37 https://doi.org/10.1620/tjem.195.101
38 https://doi.org/10.2307/1390807
39 schema:datePublished 2008-09
40 schema:datePublishedReg 2008-09-01
41 schema:description Recent development of antiangiogenic therapy for renal cell carcinoma (RCC) has significantly improved the treatment of these often refractory tumors. However, not all patients respond to therapy and assays for predicting outcome are needed. As a first step, we analyzed a retrospective cohort of tumors and assessed the ability of VEGF and VEGF receptors (VEGF-R1, -R2 and -R3) to classify tumors. We analyzed tissue microarrays containing 330 RCCs using a novel method of automated quantitative analysis of VEGF and VEGF-R expression by fluorescent immunohistochemistry. Expression of markers was separately quantified within three tissue components: tumor cells, endothelial cells and adjacent normal epithelium. VEGF and VEGF receptors were tightly coexpressed both within tumors and within adjacent normal cells (all P-values <0.001). Tumor cell expression of VEGF-R1 and -R2 was strongly and inversely correlated with vessel area (P<0.0001). Unsupervised hierarchical clustering classified tumors by coordinated expression of VEGF and VEGF-Rs. The distribution of clear cell and papillary tumors was not significantly different between clusters. Clusters with high expression of VEGF and VEGF-Rs in the tumor cells exhibited poor survival when compared with the other clusters on uni- and multivariable analysis. VEGF and VEGF receptors exhibit a complex pattern of coordinated expression in RCC. Clustering tumors by VEGF and VEGF-R in tissue components demonstrates distinct tumor phenotypes with different outcomes, and may provide a means for determining which tumors will respond to what antiangiogenic therapies.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N0897da5fe4e94844bd0db7510b442c5f
46 N994c52403dbe4e77996cf533d9f037e0
47 sg:journal.1017964
48 schema:name Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells
49 schema:pagination labinvest200865
50 schema:productId N003d0757964045fb98bf50e01c6f66d4
51 N03d422c1ba77421bb4e20a0575ea389e
52 N45e81f19d37c41baa0b0bccaae652169
53 Nd9af007604664fe0a0edefa1b526cd00
54 Ne396f9d3151544ebbd4ec02f85448308
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004074271
56 https://doi.org/10.1038/labinvest.2008.65
57 schema:sdDatePublished 2019-04-10T19:44
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N6e9126cfc5fa4600ad57df1a89e911ae
60 schema:url http://www.nature.com/articles/labinvest200865
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N003d0757964045fb98bf50e01c6f66d4 schema:name nlm_unique_id
65 schema:value 0376617
66 rdf:type schema:PropertyValue
67 N0147abe3e16745438c594ddac1e3e2ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Aged, 80 and over
69 rdf:type schema:DefinedTerm
70 N02aef7fc3e294baea12f5d62030250c1 rdf:first sg:person.014611705677.75
71 rdf:rest Nc3e9171151de4ea0895da5f7c17c23c0
72 N03d422c1ba77421bb4e20a0575ea389e schema:name doi
73 schema:value 10.1038/labinvest.2008.65
74 rdf:type schema:PropertyValue
75 N0897da5fe4e94844bd0db7510b442c5f schema:issueNumber 9
76 rdf:type schema:PublicationIssue
77 N14aea815de7347acaf2c1a6f550697ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Endothelium, Vascular
79 rdf:type schema:DefinedTerm
80 N1db06794649a45ea9dc37c667a6ad651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Humans
82 rdf:type schema:DefinedTerm
83 N3c843caa25e5421a99ab594d522f650e rdf:first sg:person.01336750727.45
84 rdf:rest N5cc7903bfb2c4a318f386847f1a9e208
85 N45e81f19d37c41baa0b0bccaae652169 schema:name readcube_id
86 schema:value 1369cb9b8d342abce741da52799dda950fa107bbad08ec58dfacf2274d5db2f9
87 rdf:type schema:PropertyValue
88 N5cc7903bfb2c4a318f386847f1a9e208 rdf:first sg:person.01030245714.67
89 rdf:rest N79ba0c57ffd14450976adf313220f0d8
90 N61fd11bc7f0b4a2898905ae3dc636eec rdf:first sg:person.0706626451.72
91 rdf:rest N02aef7fc3e294baea12f5d62030250c1
92 N69ffd13fb925461ea04d820d1277a9e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Kidney Neoplasms
94 rdf:type schema:DefinedTerm
95 N6e9126cfc5fa4600ad57df1a89e911ae schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N79ba0c57ffd14450976adf313220f0d8 rdf:first sg:person.01325454114.10
98 rdf:rest N61fd11bc7f0b4a2898905ae3dc636eec
99 N92aa6eb1fad64bb9b78500049b116c9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Vascular Endothelial Growth Factor A
101 rdf:type schema:DefinedTerm
102 N9523ac4286ec4ea3bb27ac9d4a4609f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Receptors, Vascular Endothelial Growth Factor
104 rdf:type schema:DefinedTerm
105 N994c52403dbe4e77996cf533d9f037e0 schema:volumeNumber 88
106 rdf:type schema:PublicationVolume
107 N9ea58a8b885446368ab58efe1a723de4 rdf:first sg:person.012367147604.10
108 rdf:rest rdf:nil
109 Nb25f5100c451458d86192cdc8ce4e4dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Carcinoma, Renal Cell
111 rdf:type schema:DefinedTerm
112 Nb88ab00028014953a5a0f6aefbdc4737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Tissue Array Analysis
114 rdf:type schema:DefinedTerm
115 Nc3e9171151de4ea0895da5f7c17c23c0 rdf:first sg:person.01340552210.25
116 rdf:rest N9ea58a8b885446368ab58efe1a723de4
117 Nd82b06b2876844acb831ba89a5bd3a41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Adult
119 rdf:type schema:DefinedTerm
120 Nd9acaaf6bac746558480636a84092028 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aged
122 rdf:type schema:DefinedTerm
123 Nd9af007604664fe0a0edefa1b526cd00 schema:name dimensions_id
124 schema:value pub.1004074271
125 rdf:type schema:PropertyValue
126 Ne396f9d3151544ebbd4ec02f85448308 schema:name pubmed_id
127 schema:value 18626467
128 rdf:type schema:PropertyValue
129 Ne6bcf6fd12f34ec4a2cf7296c77123c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Middle Aged
131 rdf:type schema:DefinedTerm
132 Nf55947030b514786941eeaf65f55a6d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Immunohistochemistry
134 rdf:type schema:DefinedTerm
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
139 schema:name Oncology and Carcinogenesis
140 rdf:type schema:DefinedTerm
141 sg:grant.2417459 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2008.65
142 rdf:type schema:MonetaryGrant
143 sg:grant.2478248 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2008.65
144 rdf:type schema:MonetaryGrant
145 sg:grant.2604251 http://pending.schema.org/fundedItem sg:pub.10.1038/labinvest.2008.65
146 rdf:type schema:MonetaryGrant
147 sg:journal.1017964 schema:issn 0023-6837
148 1530-0307
149 schema:name Laboratory Investigation
150 rdf:type schema:Periodical
151 sg:person.01030245714.67 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
152 schema:familyName Siddiqui
153 schema:givenName Summar F
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030245714.67
155 rdf:type schema:Person
156 sg:person.012367147604.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
157 schema:familyName Camp
158 schema:givenName Robert L
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10
160 rdf:type schema:Person
161 sg:person.01325454114.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
162 schema:familyName Angeletti
163 schema:givenName Cesar
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325454114.10
165 rdf:type schema:Person
166 sg:person.01336750727.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
167 schema:familyName Kluger
168 schema:givenName Harriet M
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45
170 rdf:type schema:Person
171 sg:person.01340552210.25 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
172 schema:familyName Molinaro
173 schema:givenName Annette M
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340552210.25
175 rdf:type schema:Person
176 sg:person.014611705677.75 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
177 schema:familyName Kelly
178 schema:givenName William K
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611705677.75
180 rdf:type schema:Person
181 sg:person.0706626451.72 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
182 schema:familyName Sznol
183 schema:givenName Mario
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706626451.72
185 rdf:type schema:Person
186 sg:pub.10.1038/ncponc0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035025701
187 https://doi.org/10.1038/ncponc0403
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
190 https://doi.org/10.1038/nm791
191 rdf:type schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1075262311 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1082146912 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1082395614 schema:CreativeWork
195 https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<992::aid-cncr26>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1035569909
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/cncr.10635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000182253
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/cncr.20887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035650107
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.humpath.2007.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033692752
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0022-5347(01)67599-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003018323
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0090-4295(98)00019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047291831
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1056/nejmoa065044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947936
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/bti499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013038565
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1097/01.ju.0000074870.54671.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018970576
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/j.1464-410x.2004.04605.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029569537
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1464-410x.2004.04786.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004714641
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.1464-410x.2006.06376.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017769150
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1111/j.1464-410x.2006.06387.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000975109
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1158/0008-5472.can-05-2560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009643851
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1200/jco.2005.23.16_suppl.lba4510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079369912
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1620/tjem.195.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010039164
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2307/1390807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069468261
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
232 schema:name Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
233 Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
234 Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...