Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10

AUTHORS

Ilse M Rood, Jeroen K J Deegens, Michael L Merchant, Wim P M Tamboer, Daniel W Wilkey, Jack F M Wetzels, Jon B Klein

ABSTRACT

Urinary microvesicles, such as 40-100 nm exosomes and 100-1000 nm microparticles, contain many proteins that may serve as biomarkers of renal disease. Microvesicles have been isolated by ultracentrifugation or nanomembrane ultrafiltration from normal urine; however, little is known about the efficiency of these methods in isolating microvesicles from patients with nephrotic-range proteinuria. Here we compared three techniques to isolate microvesicles from nephrotic urine: nanomembrane ultrafiltration, ultracentrifugation, and ultracentrifugation followed by size-exclusion chromatography (UC-SEC). Highly abundant urinary proteins were still present in sufficient quantity after ultrafiltration or ultracentrifugation to blunt detection of less abundant microvesicular proteins by MALDI-TOF-TOF mass spectrometry. The microvesicular markers neprilysin, aquaporin-2, and podocalyxin were highly enriched following UC-SEC compared with preparations by ultrafiltration or ultracentrifugation alone. Electron microscopy of the UC-SEC fractions found microvesicles of varying size, compatible with the presence of both exosomes and microparticles. Thus, UC-SEC following ultracentrifugation to further enrich and purify microparticles facilitates the search for prognostic biomarkers that might be used to predict the clinical course of nephrotic syndrome. More... »

PAGES

810-816

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ki.2010.262

DOI

http://dx.doi.org/10.1038/ki.2010.262

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021347883

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20686450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aquaporin 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell-Derived Microparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methods", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nephrotic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neprilysin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Particle Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteinuria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sialoglycoproteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.10417.33", 
          "name": [
            "Department of Nephrology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rood", 
        "givenName": "Ilse M", 
        "id": "sg:person.0772451447.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772451447.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.10417.33", 
          "name": [
            "Department of Nephrology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deegens", 
        "givenName": "Jeroen K J", 
        "id": "sg:person.01241751077.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241751077.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Louisville", 
          "id": "https://www.grid.ac/institutes/grid.266623.5", 
          "name": [
            "Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merchant", 
        "givenName": "Michael L", 
        "id": "sg:person.01207242230.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207242230.62"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Tamboer", 
        "givenName": "Wim P M", 
        "id": "sg:person.01302556341.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302556341.85"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Wilkey", 
        "givenName": "Daniel W", 
        "id": "sg:person.0600367770.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600367770.62"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Wetzels", 
        "givenName": "Jack F M", 
        "id": "sg:person.0757631446.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757631446.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Louisville", 
          "id": "https://www.grid.ac/institutes/grid.266623.5", 
          "name": [
            "Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Jon B", 
        "id": "sg:person.014346005447.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346005447.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cyto.2008.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003860285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0403453101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007766852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200800109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011447642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.2009.550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011664689", 
          "https://doi.org/10.1038/ki.2009.550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1124619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014350646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2008040406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017865516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2008040406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017865516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00011-008-8210-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019495758", 
          "https://doi.org/10.1007/s00011-008-8210-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.2008.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025914861", 
          "https://doi.org/10.1038/ki.2008.206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ki.5000273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026280656", 
          "https://doi.org/10.1038/sj.ki.5000273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1523-1755.2002.kid565.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027730575", 
          "https://doi.org/10.1111/j.1523-1755.2002.kid565.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.r200007-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030622889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajprenal.90313.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033093732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jri.2007.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033419675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ki.5002510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036782915", 
          "https://doi.org/10.1038/sj.ki.5002510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1523-1755.2005.09420.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040993604", 
          "https://doi.org/10.1111/j.1523-1755.2005.09420.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.r600004-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041315420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfn058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041767701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-584-7:513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043698459", 
          "https://doi.org/10.1385/1-59259-584-7:513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajprenal.00434.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049374520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070913572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075019765", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080014493", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "Urinary microvesicles, such as 40-100 nm exosomes and 100-1000 nm microparticles, contain many proteins that may serve as biomarkers of renal disease. Microvesicles have been isolated by ultracentrifugation or nanomembrane ultrafiltration from normal urine; however, little is known about the efficiency of these methods in isolating microvesicles from patients with nephrotic-range proteinuria. Here we compared three techniques to isolate microvesicles from nephrotic urine: nanomembrane ultrafiltration, ultracentrifugation, and ultracentrifugation followed by size-exclusion chromatography (UC-SEC). Highly abundant urinary proteins were still present in sufficient quantity after ultrafiltration or ultracentrifugation to blunt detection of less abundant microvesicular proteins by MALDI-TOF-TOF mass spectrometry. The microvesicular markers neprilysin, aquaporin-2, and podocalyxin were highly enriched following UC-SEC compared with preparations by ultrafiltration or ultracentrifugation alone. Electron microscopy of the UC-SEC fractions found microvesicles of varying size, compatible with the presence of both exosomes and microparticles. Thus, UC-SEC following ultracentrifugation to further enrich and purify microparticles facilitates the search for prognostic biomarkers that might be used to predict the clinical course of nephrotic syndrome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ki.2010.262", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2690276", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1015319", 
        "issn": [
          "0085-2538", 
          "1523-1755"
        ], 
        "name": "Kidney International", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome", 
    "pagination": "810-816", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65b6107e04960595322ec6629b752cafbf750a2df966b5bb258e332a457fa114"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20686450"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0323470"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ki.2010.262"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021347883"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ki.2010.262", 
      "https://app.dimensions.ai/details/publication/pub.1021347883"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ki/journal/v78/n8/full/ki2010262a.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.262'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.262'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.262'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.262'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      64 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ki.2010.262 schema:about N35a1f7672b154884817a16e8e1151bbf
2 N48df9ef74fdf44f191d1748ba7f4fbae
3 N714acce62ccf4b6fbf5d39d1d5128859
4 N842f4729cb7941d1b3c99bdd373463f0
5 N8c6508e7d21c4308ba0999a81225e6b3
6 N907c6595ce1e41d18e3bbb765d77d85b
7 N99fab3ec19354b2da6625360675f8a51
8 Nb802cbd2ee604008a925d937816e6b47
9 Nbc34aa9bcd40413a902bf7c402645884
10 Nd5476cf4661e494da7067b1fcd19ddcf
11 Nf10b40ad5c804446a757f636a2406d28
12 Nf801723cca0e4b9cb7b58802916e6965
13 Nfa166f020fae433c8de6ef4e23fd6346
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author Nfab606b978b446e58b844d5ad6bdbd70
17 schema:citation sg:pub.10.1007/s00011-008-8210-7
18 sg:pub.10.1038/ki.2008.206
19 sg:pub.10.1038/ki.2009.550
20 sg:pub.10.1038/sj.ki.5000273
21 sg:pub.10.1038/sj.ki.5002510
22 sg:pub.10.1111/j.1523-1755.2002.kid565.x
23 sg:pub.10.1111/j.1523-1755.2005.09420.x
24 sg:pub.10.1385/1-59259-584-7:513
25 https://app.dimensions.ai/details/publication/pub.1075019765
26 https://app.dimensions.ai/details/publication/pub.1080014493
27 https://doi.org/10.1002/pmic.200800109
28 https://doi.org/10.1016/j.cyto.2008.02.005
29 https://doi.org/10.1016/j.jri.2007.03.008
30 https://doi.org/10.1073/pnas.0403453101
31 https://doi.org/10.1074/mcp.r200007-mcp200
32 https://doi.org/10.1074/mcp.r600004-mcp200
33 https://doi.org/10.1093/ndt/gfn058
34 https://doi.org/10.1126/science.1124619
35 https://doi.org/10.1152/ajprenal.00434.2006
36 https://doi.org/10.1152/ajprenal.90313.2008
37 https://doi.org/10.1681/asn.2008040406
38 https://doi.org/10.2741/1270
39 schema:datePublished 2010-10
40 schema:datePublishedReg 2010-10-01
41 schema:description Urinary microvesicles, such as 40-100 nm exosomes and 100-1000 nm microparticles, contain many proteins that may serve as biomarkers of renal disease. Microvesicles have been isolated by ultracentrifugation or nanomembrane ultrafiltration from normal urine; however, little is known about the efficiency of these methods in isolating microvesicles from patients with nephrotic-range proteinuria. Here we compared three techniques to isolate microvesicles from nephrotic urine: nanomembrane ultrafiltration, ultracentrifugation, and ultracentrifugation followed by size-exclusion chromatography (UC-SEC). Highly abundant urinary proteins were still present in sufficient quantity after ultrafiltration or ultracentrifugation to blunt detection of less abundant microvesicular proteins by MALDI-TOF-TOF mass spectrometry. The microvesicular markers neprilysin, aquaporin-2, and podocalyxin were highly enriched following UC-SEC compared with preparations by ultrafiltration or ultracentrifugation alone. Electron microscopy of the UC-SEC fractions found microvesicles of varying size, compatible with the presence of both exosomes and microparticles. Thus, UC-SEC following ultracentrifugation to further enrich and purify microparticles facilitates the search for prognostic biomarkers that might be used to predict the clinical course of nephrotic syndrome.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N3c3612ccde344ae5b56f9f2814492ed6
46 N411f41ed6f2e4842a25f4535abe21218
47 sg:journal.1015319
48 schema:name Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome
49 schema:pagination 810-816
50 schema:productId N2d492d0193a943b983ceddd04e661669
51 N456f5c313c54441393af4e1dd451b07f
52 N864b35ae61f34167a8764c3d19d83e6c
53 Nddd374fb210b493f83d82c25792c4b21
54 Nf41e00f2b7a94468b11c2b282063e205
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021347883
56 https://doi.org/10.1038/ki.2010.262
57 schema:sdDatePublished 2019-04-10T17:19
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N7af7ccca1e5746048c8e36aad750abc0
60 schema:url http://www.nature.com/ki/journal/v78/n8/full/ki2010262a.html
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N15924d2da670400abdc4b228a1f79e21 rdf:first sg:person.0757631446.40
65 rdf:rest N9a86b624fb31452c9962beccab208e69
66 N2d492d0193a943b983ceddd04e661669 schema:name doi
67 schema:value 10.1038/ki.2010.262
68 rdf:type schema:PropertyValue
69 N35a1f7672b154884817a16e8e1151bbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Neprilysin
71 rdf:type schema:DefinedTerm
72 N3c3612ccde344ae5b56f9f2814492ed6 schema:issueNumber 8
73 rdf:type schema:PublicationIssue
74 N411f41ed6f2e4842a25f4535abe21218 schema:volumeNumber 78
75 rdf:type schema:PublicationVolume
76 N456f5c313c54441393af4e1dd451b07f schema:name dimensions_id
77 schema:value pub.1021347883
78 rdf:type schema:PropertyValue
79 N47739d7a2baf40789969fbc67bfdb1ef rdf:first sg:person.01302556341.85
80 rdf:rest Ne2418619310c4ad19beebc5ad65eaba4
81 N48df9ef74fdf44f191d1748ba7f4fbae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Mass Spectrometry
83 rdf:type schema:DefinedTerm
84 N714acce62ccf4b6fbf5d39d1d5128859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Exosomes
86 rdf:type schema:DefinedTerm
87 N7af7ccca1e5746048c8e36aad750abc0 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N842f4729cb7941d1b3c99bdd373463f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Aquaporin 2
91 rdf:type schema:DefinedTerm
92 N864b35ae61f34167a8764c3d19d83e6c schema:name readcube_id
93 schema:value 65b6107e04960595322ec6629b752cafbf750a2df966b5bb258e332a457fa114
94 rdf:type schema:PropertyValue
95 N8c6508e7d21c4308ba0999a81225e6b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Sialoglycoproteins
97 rdf:type schema:DefinedTerm
98 N907c6595ce1e41d18e3bbb765d77d85b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Biomarkers
100 rdf:type schema:DefinedTerm
101 N99fab3ec19354b2da6625360675f8a51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Proteinuria
103 rdf:type schema:DefinedTerm
104 N9a86b624fb31452c9962beccab208e69 rdf:first sg:person.014346005447.47
105 rdf:rest rdf:nil
106 Nb0f06e892ea74488b98a79f724a25a1e rdf:first sg:person.01241751077.60
107 rdf:rest Nb53373d6ef33459f864eae65b1311901
108 Nb53373d6ef33459f864eae65b1311901 rdf:first sg:person.01207242230.62
109 rdf:rest N47739d7a2baf40789969fbc67bfdb1ef
110 Nb802cbd2ee604008a925d937816e6b47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Cell-Derived Microparticles
112 rdf:type schema:DefinedTerm
113 Nbc34aa9bcd40413a902bf7c402645884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Particle Size
115 rdf:type schema:DefinedTerm
116 Nd5476cf4661e494da7067b1fcd19ddcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Methods
118 rdf:type schema:DefinedTerm
119 Nddd374fb210b493f83d82c25792c4b21 schema:name nlm_unique_id
120 schema:value 0323470
121 rdf:type schema:PropertyValue
122 Ne2418619310c4ad19beebc5ad65eaba4 rdf:first sg:person.0600367770.62
123 rdf:rest N15924d2da670400abdc4b228a1f79e21
124 Nf10b40ad5c804446a757f636a2406d28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Nephrotic Syndrome
126 rdf:type schema:DefinedTerm
127 Nf41e00f2b7a94468b11c2b282063e205 schema:name pubmed_id
128 schema:value 20686450
129 rdf:type schema:PropertyValue
130 Nf801723cca0e4b9cb7b58802916e6965 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Proteomics
132 rdf:type schema:DefinedTerm
133 Nfa166f020fae433c8de6ef4e23fd6346 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 Nfab606b978b446e58b844d5ad6bdbd70 rdf:first sg:person.0772451447.24
137 rdf:rest Nb0f06e892ea74488b98a79f724a25a1e
138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
139 schema:name Biological Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biochemistry and Cell Biology
143 rdf:type schema:DefinedTerm
144 sg:grant.2690276 http://pending.schema.org/fundedItem sg:pub.10.1038/ki.2010.262
145 rdf:type schema:MonetaryGrant
146 sg:journal.1015319 schema:issn 0085-2538
147 1523-1755
148 schema:name Kidney International
149 rdf:type schema:Periodical
150 sg:person.01207242230.62 schema:affiliation https://www.grid.ac/institutes/grid.266623.5
151 schema:familyName Merchant
152 schema:givenName Michael L
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207242230.62
154 rdf:type schema:Person
155 sg:person.01241751077.60 schema:affiliation https://www.grid.ac/institutes/grid.10417.33
156 schema:familyName Deegens
157 schema:givenName Jeroen K J
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241751077.60
159 rdf:type schema:Person
160 sg:person.01302556341.85 schema:familyName Tamboer
161 schema:givenName Wim P M
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302556341.85
163 rdf:type schema:Person
164 sg:person.014346005447.47 schema:affiliation https://www.grid.ac/institutes/grid.266623.5
165 schema:familyName Klein
166 schema:givenName Jon B
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346005447.47
168 rdf:type schema:Person
169 sg:person.0600367770.62 schema:familyName Wilkey
170 schema:givenName Daniel W
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600367770.62
172 rdf:type schema:Person
173 sg:person.0757631446.40 schema:familyName Wetzels
174 schema:givenName Jack F M
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757631446.40
176 rdf:type schema:Person
177 sg:person.0772451447.24 schema:affiliation https://www.grid.ac/institutes/grid.10417.33
178 schema:familyName Rood
179 schema:givenName Ilse M
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772451447.24
181 rdf:type schema:Person
182 sg:pub.10.1007/s00011-008-8210-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019495758
183 https://doi.org/10.1007/s00011-008-8210-7
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ki.2008.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025914861
186 https://doi.org/10.1038/ki.2008.206
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ki.2009.550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011664689
189 https://doi.org/10.1038/ki.2009.550
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/sj.ki.5000273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026280656
192 https://doi.org/10.1038/sj.ki.5000273
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/sj.ki.5002510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036782915
195 https://doi.org/10.1038/sj.ki.5002510
196 rdf:type schema:CreativeWork
197 sg:pub.10.1111/j.1523-1755.2002.kid565.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027730575
198 https://doi.org/10.1111/j.1523-1755.2002.kid565.x
199 rdf:type schema:CreativeWork
200 sg:pub.10.1111/j.1523-1755.2005.09420.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040993604
201 https://doi.org/10.1111/j.1523-1755.2005.09420.x
202 rdf:type schema:CreativeWork
203 sg:pub.10.1385/1-59259-584-7:513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043698459
204 https://doi.org/10.1385/1-59259-584-7:513
205 rdf:type schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1075019765 schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1080014493 schema:CreativeWork
208 https://doi.org/10.1002/pmic.200800109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011447642
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.cyto.2008.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003860285
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jri.2007.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033419675
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1073/pnas.0403453101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007766852
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1074/mcp.r200007-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030622889
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1074/mcp.r600004-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041315420
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/ndt/gfn058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041767701
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.1124619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014350646
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1152/ajprenal.00434.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049374520
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1152/ajprenal.90313.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033093732
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1681/asn.2008040406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017865516
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2741/1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070913572
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.10417.33 schema:alternateName Radboud University Nijmegen Medical Centre
233 schema:name Department of Nephrology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.266623.5 schema:alternateName University of Louisville
236 schema:name Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...