Genome-wide analysis of epigenetic signatures for kidney-specific transporters View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09

AUTHORS

Ryota Kikuchi, Shintaro Yagi, Hiroyuki Kusuhara, Satoki Imai, Yuichi Sugiyama, Kunio Shiota

ABSTRACT

DNA methylation-dependent gene silencing is one of the most characterized mechanisms in epigenetic regulation of gene expression. This process is thought to influence the ability of hepatocyte nuclear factor 1 (HNF1) to transactivate organic anion transporter expression in the liver and kidney. To evaluate this further we profiled 282 mouse solute carrier transporters by examining regions near their transcription start sites for tissue-dependent differentially methylated regions (T-DMR) using restriction tag-mediated amplification to determine T-DMR disparity between the liver and kidney. Forty-two of these were associated with T-DMR tags hypomethylated in the kidney but hypermethylated in the liver. Computational analysis found a canonical HNF1-binding motif within 1 kbp of the promoter region of 13 carriers including the amino acid transporters Slc6a19, Slc6a20, Slc7a8 and Slc7a9; all expressed predominantly in the kidney. Bisulfite genomic sequencing found that CpG dinucleotides neighboring the T-DMR tags were hypomethylated in the kidney compared with the liver. The Hnf1alpha promoter region itself contained a T-DMR hypomethylated in the liver and kidney but hypermethylated in the cerebrum, consistent with the tissue distribution of Hnf1alpha. Taken together, our results show a central role of DNA methylation in the kidney-specific expression of amino acid transporters thus determining both the tissue distribution of their master regulator, Hnf1alpha, and its interaction with downstream genes. More... »

PAGES

569-577

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ki.2010.176

DOI

http://dx.doi.org/10.1038/ki.2010.176

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028119449

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20555317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Transport Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenesis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatocyte Nuclear Factor 1-alpha", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Initiation Site", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kikuchi", 
        "givenName": "Ryota", 
        "id": "sg:person.01234313155.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234313155.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Yagi", 
        "givenName": "Shintaro", 
        "id": "sg:person.01360647727.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360647727.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kusuhara", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.01124421257.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124421257.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imai", 
        "givenName": "Satoki", 
        "id": "sg:person.0635650472.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635650472.01"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Sugiyama", 
        "givenName": "Yuichi", 
        "id": "sg:person.01334724471.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334724471.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiota", 
        "givenName": "Kunio", 
        "id": "sg:person.01016652264.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016652264.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/86871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000259771", 
          "https://doi.org/10.1038/86871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/86871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000259771", 
          "https://doi.org/10.1038/86871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-003-1192-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000990925", 
          "https://doi.org/10.1007/s00424-003-1192-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001245785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.108.052589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008615075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.107.039701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010805871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4086505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011879039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.placenta.2007.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013090391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-003-1086-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013659468", 
          "https://doi.org/10.1007/s00424-003-1086-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000078205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013983266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.00018.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020817128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejps.2005.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021004222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m103988200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022110043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.108.046458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023057011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023906761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-3659(01)00480-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035415175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036150552", 
          "https://doi.org/10.1038/nrg2341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bcp.2006.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037559022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.012025199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044815609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajprenal.90257.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045113857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/jpet.107.128249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046687081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00816-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050994171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.106.025494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051525917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.074070.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052469276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/embo-reports/kvd071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053469293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpgi.00409.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063193171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389200013338324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069175338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077272632", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "DNA methylation-dependent gene silencing is one of the most characterized mechanisms in epigenetic regulation of gene expression. This process is thought to influence the ability of hepatocyte nuclear factor 1 (HNF1) to transactivate organic anion transporter expression in the liver and kidney. To evaluate this further we profiled 282 mouse solute carrier transporters by examining regions near their transcription start sites for tissue-dependent differentially methylated regions (T-DMR) using restriction tag-mediated amplification to determine T-DMR disparity between the liver and kidney. Forty-two of these were associated with T-DMR tags hypomethylated in the kidney but hypermethylated in the liver. Computational analysis found a canonical HNF1-binding motif within 1 kbp of the promoter region of 13 carriers including the amino acid transporters Slc6a19, Slc6a20, Slc7a8 and Slc7a9; all expressed predominantly in the kidney. Bisulfite genomic sequencing found that CpG dinucleotides neighboring the T-DMR tags were hypomethylated in the kidney compared with the liver. The Hnf1alpha promoter region itself contained a T-DMR hypomethylated in the liver and kidney but hypermethylated in the cerebrum, consistent with the tissue distribution of Hnf1alpha. Taken together, our results show a central role of DNA methylation in the kidney-specific expression of amino acid transporters thus determining both the tissue distribution of their master regulator, Hnf1alpha, and its interaction with downstream genes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ki.2010.176", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6010911", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1015319", 
        "issn": [
          "0085-2538", 
          "1523-1755"
        ], 
        "name": "Kidney International", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Genome-wide analysis of epigenetic signatures for kidney-specific transporters", 
    "pagination": "569-577", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85f4403e43d2f6d79953f13fa1c720045369f95fff7d33c61358f9443218e510"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20555317"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0323470"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ki.2010.176"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028119449"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ki.2010.176", 
      "https://app.dimensions.ai/details/publication/pub.1028119449"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ki/journal/v78/n6/full/ki2010176a.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.176'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.176'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.176'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ki.2010.176'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      69 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ki.2010.176 schema:about N084fb1d3fe9a4d3bb1bd0d924c6b9313
2 N1ffffdf40b714a28b3dece998027d2ec
3 N386bfa9797f04a95bbf329adf080a8fc
4 N4c321cebd3ab432495728d24d52aae78
5 N67efdcb51c304c4ba67eb0ba51b0b2f8
6 N9f88189452fc4b388c40490c70bdf027
7 Nb0446d10c8b44296b0bcddb958e6ec75
8 Nb072876746224ddaac4e1935e2fce697
9 Nb54e45a8b8374ca599ca23fb9fa20902
10 Nc43028aa44b7476c9a3cd032fbccdd6f
11 Nef4e31b829774f4b973da30ca241a6ba
12 Nf3961e1eea504a29ac34f81a3c76d82e
13 Nfd102a7a10394ece91437076ba703243
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N34c24ec4a44048e4b9dd81d08cf7884b
17 schema:citation sg:pub.10.1007/s00424-003-1086-z
18 sg:pub.10.1007/s00424-003-1192-y
19 sg:pub.10.1038/86871
20 sg:pub.10.1038/nrg2341
21 https://app.dimensions.ai/details/publication/pub.1077272632
22 https://doi.org/10.1016/j.bcp.2006.03.016
23 https://doi.org/10.1016/j.ejps.2005.12.003
24 https://doi.org/10.1016/j.placenta.2007.09.011
25 https://doi.org/10.1016/s0022-2836(02)00816-1
26 https://doi.org/10.1016/s0092-8674(00)81033-8
27 https://doi.org/10.1016/s0168-3659(01)00480-1
28 https://doi.org/10.1073/pnas.012025199
29 https://doi.org/10.1074/jbc.m103988200
30 https://doi.org/10.1093/embo-reports/kvd071
31 https://doi.org/10.1093/nar/gkm226
32 https://doi.org/10.1101/gr.074070.107
33 https://doi.org/10.1101/gr.4086505
34 https://doi.org/10.1124/jpet.107.128249
35 https://doi.org/10.1124/mol.106.025494
36 https://doi.org/10.1124/mol.107.039701
37 https://doi.org/10.1124/mol.108.046458
38 https://doi.org/10.1124/mol.108.052589
39 https://doi.org/10.1152/ajpgi.00409.2002
40 https://doi.org/10.1152/ajprenal.90257.2008
41 https://doi.org/10.1152/physrev.00018.2006
42 https://doi.org/10.1159/000078205
43 https://doi.org/10.2174/1389200013338324
44 schema:datePublished 2010-09
45 schema:datePublishedReg 2010-09-01
46 schema:description DNA methylation-dependent gene silencing is one of the most characterized mechanisms in epigenetic regulation of gene expression. This process is thought to influence the ability of hepatocyte nuclear factor 1 (HNF1) to transactivate organic anion transporter expression in the liver and kidney. To evaluate this further we profiled 282 mouse solute carrier transporters by examining regions near their transcription start sites for tissue-dependent differentially methylated regions (T-DMR) using restriction tag-mediated amplification to determine T-DMR disparity between the liver and kidney. Forty-two of these were associated with T-DMR tags hypomethylated in the kidney but hypermethylated in the liver. Computational analysis found a canonical HNF1-binding motif within 1 kbp of the promoter region of 13 carriers including the amino acid transporters Slc6a19, Slc6a20, Slc7a8 and Slc7a9; all expressed predominantly in the kidney. Bisulfite genomic sequencing found that CpG dinucleotides neighboring the T-DMR tags were hypomethylated in the kidney compared with the liver. The Hnf1alpha promoter region itself contained a T-DMR hypomethylated in the liver and kidney but hypermethylated in the cerebrum, consistent with the tissue distribution of Hnf1alpha. Taken together, our results show a central role of DNA methylation in the kidney-specific expression of amino acid transporters thus determining both the tissue distribution of their master regulator, Hnf1alpha, and its interaction with downstream genes.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N0fbc959df16b4c40ac1cb3e3aaf1adc9
51 N31a4333428fb415199b0399e9c84c404
52 sg:journal.1015319
53 schema:name Genome-wide analysis of epigenetic signatures for kidney-specific transporters
54 schema:pagination 569-577
55 schema:productId N2044635444f14fcb9d3d1362fe09fe89
56 N4ceb327820874b23b2ae61be39333f9d
57 N684980c1e879419fa4badee36a953bcb
58 Nb141857f2c4a4fbab15807ced261f386
59 Nc6be0e78e25045a284f3e1388a61d7e8
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028119449
61 https://doi.org/10.1038/ki.2010.176
62 schema:sdDatePublished 2019-04-10T20:34
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N941f254ed90f474c81d7949052a09781
65 schema:url http://www.nature.com/ki/journal/v78/n6/full/ki2010176a.html
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N084fb1d3fe9a4d3bb1bd0d924c6b9313 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Mice
71 rdf:type schema:DefinedTerm
72 N0fbc959df16b4c40ac1cb3e3aaf1adc9 schema:issueNumber 6
73 rdf:type schema:PublicationIssue
74 N1ffffdf40b714a28b3dece998027d2ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Membrane Transport Proteins
76 rdf:type schema:DefinedTerm
77 N2044635444f14fcb9d3d1362fe09fe89 schema:name dimensions_id
78 schema:value pub.1028119449
79 rdf:type schema:PropertyValue
80 N26dae774e6ec4b6aa359faa92ad21536 rdf:first sg:person.01124421257.54
81 rdf:rest Nff2e5cc08b7a4d25a169fa8bdb287363
82 N31a4333428fb415199b0399e9c84c404 schema:volumeNumber 78
83 rdf:type schema:PublicationVolume
84 N34c24ec4a44048e4b9dd81d08cf7884b rdf:first sg:person.01234313155.21
85 rdf:rest N93055cd17b8d44f6ac42b6e32a4432ff
86 N386bfa9797f04a95bbf329adf080a8fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Genome-Wide Association Study
88 rdf:type schema:DefinedTerm
89 N4c321cebd3ab432495728d24d52aae78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Binding Sites
91 rdf:type schema:DefinedTerm
92 N4ceb327820874b23b2ae61be39333f9d schema:name doi
93 schema:value 10.1038/ki.2010.176
94 rdf:type schema:PropertyValue
95 N67efdcb51c304c4ba67eb0ba51b0b2f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Animals
97 rdf:type schema:DefinedTerm
98 N684980c1e879419fa4badee36a953bcb schema:name readcube_id
99 schema:value 85f4403e43d2f6d79953f13fa1c720045369f95fff7d33c61358f9443218e510
100 rdf:type schema:PropertyValue
101 N93055cd17b8d44f6ac42b6e32a4432ff rdf:first sg:person.01360647727.96
102 rdf:rest N26dae774e6ec4b6aa359faa92ad21536
103 N941f254ed90f474c81d7949052a09781 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N9f88189452fc4b388c40490c70bdf027 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Kidney
107 rdf:type schema:DefinedTerm
108 Na1974fe435d24592a329d9ee1a4253b8 rdf:first sg:person.01016652264.17
109 rdf:rest rdf:nil
110 Nb0446d10c8b44296b0bcddb958e6ec75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Amino Acid Transport Systems
112 rdf:type schema:DefinedTerm
113 Nb072876746224ddaac4e1935e2fce697 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Epigenesis, Genetic
115 rdf:type schema:DefinedTerm
116 Nb141857f2c4a4fbab15807ced261f386 schema:name nlm_unique_id
117 schema:value 0323470
118 rdf:type schema:PropertyValue
119 Nb54e45a8b8374ca599ca23fb9fa20902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name DNA Methylation
121 rdf:type schema:DefinedTerm
122 Nc43028aa44b7476c9a3cd032fbccdd6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Transcription Initiation Site
124 rdf:type schema:DefinedTerm
125 Nc6be0e78e25045a284f3e1388a61d7e8 schema:name pubmed_id
126 schema:value 20555317
127 rdf:type schema:PropertyValue
128 Nd3efe9ed062140f280529beb926208ed rdf:first sg:person.01334724471.19
129 rdf:rest Na1974fe435d24592a329d9ee1a4253b8
130 Nef4e31b829774f4b973da30ca241a6ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Gene Expression Profiling
132 rdf:type schema:DefinedTerm
133 Nf3961e1eea504a29ac34f81a3c76d82e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Hepatocyte Nuclear Factor 1-alpha
135 rdf:type schema:DefinedTerm
136 Nfd102a7a10394ece91437076ba703243 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Tissue Distribution
138 rdf:type schema:DefinedTerm
139 Nff2e5cc08b7a4d25a169fa8bdb287363 rdf:first sg:person.0635650472.01
140 rdf:rest Nd3efe9ed062140f280529beb926208ed
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
145 schema:name Genetics
146 rdf:type schema:DefinedTerm
147 sg:grant.6010911 http://pending.schema.org/fundedItem sg:pub.10.1038/ki.2010.176
148 rdf:type schema:MonetaryGrant
149 sg:journal.1015319 schema:issn 0085-2538
150 1523-1755
151 schema:name Kidney International
152 rdf:type schema:Periodical
153 sg:person.01016652264.17 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
154 schema:familyName Shiota
155 schema:givenName Kunio
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016652264.17
157 rdf:type schema:Person
158 sg:person.01124421257.54 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
159 schema:familyName Kusuhara
160 schema:givenName Hiroyuki
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124421257.54
162 rdf:type schema:Person
163 sg:person.01234313155.21 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
164 schema:familyName Kikuchi
165 schema:givenName Ryota
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234313155.21
167 rdf:type schema:Person
168 sg:person.01334724471.19 schema:familyName Sugiyama
169 schema:givenName Yuichi
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334724471.19
171 rdf:type schema:Person
172 sg:person.01360647727.96 schema:familyName Yagi
173 schema:givenName Shintaro
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360647727.96
175 rdf:type schema:Person
176 sg:person.0635650472.01 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
177 schema:familyName Imai
178 schema:givenName Satoki
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635650472.01
180 rdf:type schema:Person
181 sg:pub.10.1007/s00424-003-1086-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013659468
182 https://doi.org/10.1007/s00424-003-1086-z
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00424-003-1192-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000990925
185 https://doi.org/10.1007/s00424-003-1192-y
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/86871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000259771
188 https://doi.org/10.1038/86871
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nrg2341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036150552
191 https://doi.org/10.1038/nrg2341
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1077272632 schema:CreativeWork
194 https://doi.org/10.1016/j.bcp.2006.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037559022
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.ejps.2005.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021004222
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.placenta.2007.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013090391
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0022-2836(02)00816-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050994171
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0092-8674(00)81033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023906761
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0168-3659(01)00480-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035415175
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1073/pnas.012025199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044815609
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1074/jbc.m103988200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022110043
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/embo-reports/kvd071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053469293
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gkm226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001245785
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1101/gr.074070.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052469276
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1101/gr.4086505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011879039
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1124/jpet.107.128249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046687081
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1124/mol.106.025494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051525917
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1124/mol.107.039701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010805871
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1124/mol.108.046458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023057011
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1124/mol.108.052589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008615075
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1152/ajpgi.00409.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063193171
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1152/ajprenal.90257.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045113857
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1152/physrev.00018.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020817128
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1159/000078205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013983266
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2174/1389200013338324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069175338
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
239 schema:name Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
240 Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...